{"title":"通过轨道阱质量分析仪观测到的瞬时衰变曲线测量小分子的碰撞截面。","authors":"Ziqin Ni, Ricardo Arevalo Jr","doi":"10.1002/rcm.9887","DOIUrl":null,"url":null,"abstract":"<p>Collision cross section (CCS) of organic compounds can be measured via Fourier transform-based mass spectrometry (MS) by modeling the decay rate of transient signals in the analyzer. Deriving CCS values of low-mass molecules (mass < 2000 Da and CCS < 500 Å<sup>2</sup>) with Orbitrap MS is challenging due to their high axial frequencies and small absolute variances in cross-sectional profiles. Here, we acquired mass spectra of progressively more complex low-mass analytes using commercial Orbitrap mass spectrometers. The transient signals were processed using Fast Fourier transform (FFT) and short-time Fourier transform (StFFT) to derive decay constants of multiple select ionic species from a single MS full-scan experiment. Decay constants were translated into CCS values using at least two internal standards in the same mass spectrum. Our results suggest target ionic species should have high <i>S/N</i> in order to derive CCS values with ≤<i>0.5%</i> uncertainty. Limitations in the precision of CCS measurements reflect local space charge effects that disturb ion motion in the analyzer. The derived CCS values of polymer like fragments of Ultramark 1621 and small molecules such as individual protonated amino acids can achieve average ±1% error with selection of internal standards across a wide mass range. Future studies need to optimize the strategy to select internal standards in order to improve the precision and accuracy of CCS measurements for small molecules via Orbitrap MS.</p>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 20","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.9887","citationCount":"0","resultStr":"{\"title\":\"Collision cross-section measurements of small molecules via transient decay profiles observed in Orbitrap mass analyzers\",\"authors\":\"Ziqin Ni, Ricardo Arevalo Jr\",\"doi\":\"10.1002/rcm.9887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collision cross section (CCS) of organic compounds can be measured via Fourier transform-based mass spectrometry (MS) by modeling the decay rate of transient signals in the analyzer. Deriving CCS values of low-mass molecules (mass < 2000 Da and CCS < 500 Å<sup>2</sup>) with Orbitrap MS is challenging due to their high axial frequencies and small absolute variances in cross-sectional profiles. Here, we acquired mass spectra of progressively more complex low-mass analytes using commercial Orbitrap mass spectrometers. The transient signals were processed using Fast Fourier transform (FFT) and short-time Fourier transform (StFFT) to derive decay constants of multiple select ionic species from a single MS full-scan experiment. Decay constants were translated into CCS values using at least two internal standards in the same mass spectrum. Our results suggest target ionic species should have high <i>S/N</i> in order to derive CCS values with ≤<i>0.5%</i> uncertainty. Limitations in the precision of CCS measurements reflect local space charge effects that disturb ion motion in the analyzer. The derived CCS values of polymer like fragments of Ultramark 1621 and small molecules such as individual protonated amino acids can achieve average ±1% error with selection of internal standards across a wide mass range. Future studies need to optimize the strategy to select internal standards in order to improve the precision and accuracy of CCS measurements for small molecules via Orbitrap MS.</p>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"38 20\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.9887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9887\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9887","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Collision cross-section measurements of small molecules via transient decay profiles observed in Orbitrap mass analyzers
Collision cross section (CCS) of organic compounds can be measured via Fourier transform-based mass spectrometry (MS) by modeling the decay rate of transient signals in the analyzer. Deriving CCS values of low-mass molecules (mass < 2000 Da and CCS < 500 Å2) with Orbitrap MS is challenging due to their high axial frequencies and small absolute variances in cross-sectional profiles. Here, we acquired mass spectra of progressively more complex low-mass analytes using commercial Orbitrap mass spectrometers. The transient signals were processed using Fast Fourier transform (FFT) and short-time Fourier transform (StFFT) to derive decay constants of multiple select ionic species from a single MS full-scan experiment. Decay constants were translated into CCS values using at least two internal standards in the same mass spectrum. Our results suggest target ionic species should have high S/N in order to derive CCS values with ≤0.5% uncertainty. Limitations in the precision of CCS measurements reflect local space charge effects that disturb ion motion in the analyzer. The derived CCS values of polymer like fragments of Ultramark 1621 and small molecules such as individual protonated amino acids can achieve average ±1% error with selection of internal standards across a wide mass range. Future studies need to optimize the strategy to select internal standards in order to improve the precision and accuracy of CCS measurements for small molecules via Orbitrap MS.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.