Shuang Li, Zhiyan Liu, Haiping Zeng, Jinyu Fu, Mo Sun, Chun Bao, Chenning Zhang
{"title":"利用高分辨率质谱分析鉴定 Naomaitai 胶囊中的有效成分,并结合分子网络分析预测其作用机制。","authors":"Shuang Li, Zhiyan Liu, Haiping Zeng, Jinyu Fu, Mo Sun, Chun Bao, Chenning Zhang","doi":"10.1002/rcm.9898","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Rationale</h3>\n \n <p>Although Naomaitai capsule (NMC) is widely used in clinical practice and has a good curative effect for cerebral infarction, its material basis and mechanism of action remain unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole Orbitrap MS technology was used to analyse the in vivo and in vitro components of NMC, and the Global Natural Products Social Molecular Networking website was used to further analyse the components of NMC. Next, systems biology approaches were employed to investigate the mechanism of action of NMC. Finally, molecular docking technology was used to verify the network pharmacological results.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In total, 177 compounds were identified in vitro, including 65 terpenoids, 62 flavonoids, 25 organic acids and 11 quinones. 64 compounds were identified in the blood of mice, and the main active components included ginkgolide C, ginkgolide A, ligustilide, tanshinone IIB, olmelin, emodin and puerarin. The main targets in vivo included TP53, SRC, STAT3, PIK3CA and PIK3R1.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>In conclusion, this study has revealed that NMC acts on multiple targets in the body through various active components, exerting synergistic effects in the treatment of CI. Its mechanism of action may involve inhibiting neuronal apoptosis, oxidative stress and inflammatory responses as well as reducing cerebral vascular permeability and promoting cerebral vascular regeneration.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 20","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of active ingredients in Naomaitai capsules using high-resolution mass spectrometry unite molecular network analysis and prediction of their action mechanisms\",\"authors\":\"Shuang Li, Zhiyan Liu, Haiping Zeng, Jinyu Fu, Mo Sun, Chun Bao, Chenning Zhang\",\"doi\":\"10.1002/rcm.9898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Rationale</h3>\\n \\n <p>Although Naomaitai capsule (NMC) is widely used in clinical practice and has a good curative effect for cerebral infarction, its material basis and mechanism of action remain unclear.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole Orbitrap MS technology was used to analyse the in vivo and in vitro components of NMC, and the Global Natural Products Social Molecular Networking website was used to further analyse the components of NMC. Next, systems biology approaches were employed to investigate the mechanism of action of NMC. Finally, molecular docking technology was used to verify the network pharmacological results.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In total, 177 compounds were identified in vitro, including 65 terpenoids, 62 flavonoids, 25 organic acids and 11 quinones. 64 compounds were identified in the blood of mice, and the main active components included ginkgolide C, ginkgolide A, ligustilide, tanshinone IIB, olmelin, emodin and puerarin. The main targets in vivo included TP53, SRC, STAT3, PIK3CA and PIK3R1.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>In conclusion, this study has revealed that NMC acts on multiple targets in the body through various active components, exerting synergistic effects in the treatment of CI. Its mechanism of action may involve inhibiting neuronal apoptosis, oxidative stress and inflammatory responses as well as reducing cerebral vascular permeability and promoting cerebral vascular regeneration.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"38 20\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9898\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9898","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identification of active ingredients in Naomaitai capsules using high-resolution mass spectrometry unite molecular network analysis and prediction of their action mechanisms
Rationale
Although Naomaitai capsule (NMC) is widely used in clinical practice and has a good curative effect for cerebral infarction, its material basis and mechanism of action remain unclear.
Methods
In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole Orbitrap MS technology was used to analyse the in vivo and in vitro components of NMC, and the Global Natural Products Social Molecular Networking website was used to further analyse the components of NMC. Next, systems biology approaches were employed to investigate the mechanism of action of NMC. Finally, molecular docking technology was used to verify the network pharmacological results.
Results
In total, 177 compounds were identified in vitro, including 65 terpenoids, 62 flavonoids, 25 organic acids and 11 quinones. 64 compounds were identified in the blood of mice, and the main active components included ginkgolide C, ginkgolide A, ligustilide, tanshinone IIB, olmelin, emodin and puerarin. The main targets in vivo included TP53, SRC, STAT3, PIK3CA and PIK3R1.
Conclusions
In conclusion, this study has revealed that NMC acts on multiple targets in the body through various active components, exerting synergistic effects in the treatment of CI. Its mechanism of action may involve inhibiting neuronal apoptosis, oxidative stress and inflammatory responses as well as reducing cerebral vascular permeability and promoting cerebral vascular regeneration.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.