{"title":"精神分裂症持续残疾的机制:通过皮质-纹状体-丘脑-皮质环路功能障碍实现不精确的预测编码。","authors":"Peter F Liddle, Musa B Sami","doi":"10.1016/j.biopsych.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p><p>Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanisms of Persisting Disability in Schizophrenia: Imprecise Predictive Coding via Corticostriatothalamic-Cortical Loop Dysfunction.\",\"authors\":\"Peter F Liddle, Musa B Sami\",\"doi\":\"10.1016/j.biopsych.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.08.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.08.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Mechanisms of Persisting Disability in Schizophrenia: Imprecise Predictive Coding via Corticostriatothalamic-Cortical Loop Dysfunction.
Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.