带有诱导性 Caspase-9 自杀基因的 FGFR4 特异性 CAR-T 细胞作为治疗横纹肌肉瘤的一种方法。

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cancer gene therapy Pub Date : 2024-08-25 DOI:10.1038/s41417-024-00823-2
Wei Xiao, Liping Xu, Jinghua Wang, Kuai Yu, Bushu Xu, Yi Que, Jingjing Zhao, Qiuzhong Pan, Chengqi Gao, Penghui Zhou, Xing Zhang
{"title":"带有诱导性 Caspase-9 自杀基因的 FGFR4 特异性 CAR-T 细胞作为治疗横纹肌肉瘤的一种方法。","authors":"Wei Xiao, Liping Xu, Jinghua Wang, Kuai Yu, Bushu Xu, Yi Que, Jingjing Zhao, Qiuzhong Pan, Chengqi Gao, Penghui Zhou, Xing Zhang","doi":"10.1038/s41417-024-00823-2","DOIUrl":null,"url":null,"abstract":"Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1571-1584"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00823-2.pdf","citationCount":"0","resultStr":"{\"title\":\"FGFR4-specific CAR-T cells with inducible caspase-9 suicide gene as an approach to treat rhabdomyosarcoma\",\"authors\":\"Wei Xiao, Liping Xu, Jinghua Wang, Kuai Yu, Bushu Xu, Yi Que, Jingjing Zhao, Qiuzhong Pan, Chengqi Gao, Penghui Zhou, Xing Zhang\",\"doi\":\"10.1038/s41417-024-00823-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"31 10\",\"pages\":\"1571-1584\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41417-024-00823-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-024-00823-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00823-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转移性横纹肌肉瘤存活率低,治疗效果不理想。因此,迫切需要新的免疫治疗方法。成纤维细胞生长因子受体4(FGFR4)是横纹肌肉瘤的一个新的治疗靶点,它在横纹肌肉瘤的发病和发展过程中起着至关重要的作用。本研究旨在生成基于FGFR4单链可变片段的嵌合抗原受体(CAR)T细胞,同时不产生明显毒性,并结合诱导性caspase-9(iCasp9)自杀基因系统以提高其安全性。在正常鼠组织、正常人组织和横纹肌肉瘤患者标本中评估了表皮生长因子受体4抗原的表达。结合 4-1BB 协同刺激结构域、CD3ζ 信号结构域和 iCasp9 自杀基因,开发出了带有 FGFR4 特异性单链可变片段的 CAR-T 细胞。研究人员在体外和体内对 FGFR4 CAR-T 细胞的特异性细胞毒性作用、T 细胞增殖、细胞因子分泌、化学二聚化(AP20187)诱导凋亡以及毒性进行了研究。FGFR4 CAR-T细胞产生多种免疫促进细胞因子,包括肿瘤坏死因子α、白细胞介素2和干扰素γ,并在体外对FGFR4过表达横纹肌肉瘤细胞显示出有效的细胞毒活性。FGFR4 CAR-T细胞对FGFR4表达过高的横纹肌肉瘤相对有效,在皮下异种移植模型中肿瘤消退,存活率较低。iCasp9 基因被整合到 FGFR4 CAR-T 细胞中,并证明有效可靠的自杀基因活性取决于 AP20187 的施用。本研究利用 FGFR4 CAR-T 细胞与小鼠 FGFR4 在共生肿瘤模型中的交叉反应,发现 FGFR4 CAR-T 细胞可以调节肿瘤生长,且无明显毒性。我们的研究表明,FGFR4是CAR-T细胞治疗横纹肌肉瘤的前瞻性靶点,且不会产生严重的靶向外毒性。带有 iCasp9 自杀基因系统的 FGFR4 CAR-T 细胞是限制毒性的安全开关,可拓宽细胞疗法的临床应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGFR4-specific CAR-T cells with inducible caspase-9 suicide gene as an approach to treat rhabdomyosarcoma
Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
期刊最新文献
Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer. The role of tumor-derived exosomal LncRNA in tumor metastasis. FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1