Wei A. Huang , Matthew Engelhard , Marika Coffman , Elliot D. Hill , Qin Weng , Abby Scheer , Gary Maslow , Ricardo Henao , Geraldine Dawson , Benjamin A. Goldstein
{"title":"改善罕见结果预测的条件多标签模型:自闭症诊断预测示例。","authors":"Wei A. Huang , Matthew Engelhard , Marika Coffman , Elliot D. Hill , Qin Weng , Abby Scheer , Gary Maslow , Ricardo Henao , Geraldine Dawson , Benjamin A. Goldstein","doi":"10.1016/j.jbi.2024.104711","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to develop a novel approach using routinely collected electronic health records (EHRs) data to improve the prediction of a rare event. We illustrated this using an example of improving early prediction of an autism diagnosis, given its low prevalence, by leveraging correlations between autism and other neurodevelopmental conditions (NDCs).</p></div><div><h3>Methods</h3><p>To achieve this, we introduced a conditional multi-label model by merging conditional learning and multi-label methodologies. The conditional learning approach breaks a hard task into more manageable pieces in each stage, and the multi-label approach utilizes information from related neurodevelopmental conditions to learn predictive latent features. The study involved forecasting autism diagnosis by age 5.5 years, utilizing data from the first 18 months of life, and the analysis of feature importance correlations to explore the alignment within the feature space across different conditions.</p></div><div><h3>Results</h3><p>Upon analysis of health records from 18,156 children, we are able to generate a model that predicts a future autism diagnosis with moderate performance (AUROC=0.76). The proposed conditional multi-label method significantly improves predictive performance with an AUROC of 0.80 (<em>p</em> < 0.001). Further examination shows that both the conditional and multi-label approach alone provided marginal lift to the model performance compared to a one-stage one-label approach. We also demonstrated the generalizability and applicability of this method using simulated data with high correlation between feature vectors for different labels.</p></div><div><h3>Conclusion</h3><p>Our findings underscore the effectiveness of the developed conditional multi-label model for early prediction of an autism diagnosis. The study introduces a versatile strategy applicable to prediction tasks involving limited target populations but sharing underlying features or etiology among related groups.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104711"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conditional multi-label model to improve prediction of a rare outcome: An illustration predicting autism diagnosis\",\"authors\":\"Wei A. Huang , Matthew Engelhard , Marika Coffman , Elliot D. Hill , Qin Weng , Abby Scheer , Gary Maslow , Ricardo Henao , Geraldine Dawson , Benjamin A. Goldstein\",\"doi\":\"10.1016/j.jbi.2024.104711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>This study aimed to develop a novel approach using routinely collected electronic health records (EHRs) data to improve the prediction of a rare event. We illustrated this using an example of improving early prediction of an autism diagnosis, given its low prevalence, by leveraging correlations between autism and other neurodevelopmental conditions (NDCs).</p></div><div><h3>Methods</h3><p>To achieve this, we introduced a conditional multi-label model by merging conditional learning and multi-label methodologies. The conditional learning approach breaks a hard task into more manageable pieces in each stage, and the multi-label approach utilizes information from related neurodevelopmental conditions to learn predictive latent features. The study involved forecasting autism diagnosis by age 5.5 years, utilizing data from the first 18 months of life, and the analysis of feature importance correlations to explore the alignment within the feature space across different conditions.</p></div><div><h3>Results</h3><p>Upon analysis of health records from 18,156 children, we are able to generate a model that predicts a future autism diagnosis with moderate performance (AUROC=0.76). The proposed conditional multi-label method significantly improves predictive performance with an AUROC of 0.80 (<em>p</em> < 0.001). Further examination shows that both the conditional and multi-label approach alone provided marginal lift to the model performance compared to a one-stage one-label approach. We also demonstrated the generalizability and applicability of this method using simulated data with high correlation between feature vectors for different labels.</p></div><div><h3>Conclusion</h3><p>Our findings underscore the effectiveness of the developed conditional multi-label model for early prediction of an autism diagnosis. The study introduces a versatile strategy applicable to prediction tasks involving limited target populations but sharing underlying features or etiology among related groups.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104711\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001291\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A conditional multi-label model to improve prediction of a rare outcome: An illustration predicting autism diagnosis
Objective
This study aimed to develop a novel approach using routinely collected electronic health records (EHRs) data to improve the prediction of a rare event. We illustrated this using an example of improving early prediction of an autism diagnosis, given its low prevalence, by leveraging correlations between autism and other neurodevelopmental conditions (NDCs).
Methods
To achieve this, we introduced a conditional multi-label model by merging conditional learning and multi-label methodologies. The conditional learning approach breaks a hard task into more manageable pieces in each stage, and the multi-label approach utilizes information from related neurodevelopmental conditions to learn predictive latent features. The study involved forecasting autism diagnosis by age 5.5 years, utilizing data from the first 18 months of life, and the analysis of feature importance correlations to explore the alignment within the feature space across different conditions.
Results
Upon analysis of health records from 18,156 children, we are able to generate a model that predicts a future autism diagnosis with moderate performance (AUROC=0.76). The proposed conditional multi-label method significantly improves predictive performance with an AUROC of 0.80 (p < 0.001). Further examination shows that both the conditional and multi-label approach alone provided marginal lift to the model performance compared to a one-stage one-label approach. We also demonstrated the generalizability and applicability of this method using simulated data with high correlation between feature vectors for different labels.
Conclusion
Our findings underscore the effectiveness of the developed conditional multi-label model for early prediction of an autism diagnosis. The study introduces a versatile strategy applicable to prediction tasks involving limited target populations but sharing underlying features or etiology among related groups.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.