Entong Jia , He Li , Fang He , Xiaoyu Xu , Jia Wei , Gaige Shao , Jingying Liu , Pengda Ma
{"title":"人工改造转录因子 SmMYB36-VP16 的代谢工程,以高水平生产丹参酮和酚酸。","authors":"Entong Jia , He Li , Fang He , Xiaoyu Xu , Jia Wei , Gaige Shao , Jingying Liu , Pengda Ma","doi":"10.1016/j.ymben.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Tanshinones and phenolic acids are the two main chemical constituents in <em>Salvia miltiorrhiza</em>, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinones and phenolic acids in <em>Salvia miltiorrhiza</em> hair roots simultaneously. Further in combination with the elicitors dual-screening technique, by applying the optimal elicitors screened, the tanshinones content in the transgenic hairy roots of <em>Salvia miltiorrhiza</em> reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"86 ","pages":"Pages 29-40"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of artificially modified transcription factor SmMYB36-VP16 for high-level production of tanshinones and phenolic acids\",\"authors\":\"Entong Jia , He Li , Fang He , Xiaoyu Xu , Jia Wei , Gaige Shao , Jingying Liu , Pengda Ma\",\"doi\":\"10.1016/j.ymben.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tanshinones and phenolic acids are the two main chemical constituents in <em>Salvia miltiorrhiza</em>, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinones and phenolic acids in <em>Salvia miltiorrhiza</em> hair roots simultaneously. Further in combination with the elicitors dual-screening technique, by applying the optimal elicitors screened, the tanshinones content in the transgenic hairy roots of <em>Salvia miltiorrhiza</em> reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"86 \",\"pages\":\"Pages 29-40\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624001071\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624001071","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic engineering of artificially modified transcription factor SmMYB36-VP16 for high-level production of tanshinones and phenolic acids
Tanshinones and phenolic acids are the two main chemical constituents in Salvia miltiorrhiza, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinones and phenolic acids in Salvia miltiorrhiza hair roots simultaneously. Further in combination with the elicitors dual-screening technique, by applying the optimal elicitors screened, the tanshinones content in the transgenic hairy roots of Salvia miltiorrhiza reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.