肺超极化 129Xe MR 气体交换模型的敏感性分析。

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2024-12-01 Epub Date: 2024-08-25 DOI:10.1002/nbm.5239
Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker
{"title":"肺超极化 129Xe MR 气体交换模型的敏感性分析。","authors":"Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker","doi":"10.1002/nbm.5239","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised <sup>129</sup>Xe gas exchange in the lung. Here, we evaluate the current <sup>129</sup>Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5239"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis of models of gas exchange for lung hyperpolarised <sup>129</sup>Xe MR.\",\"authors\":\"Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker\",\"doi\":\"10.1002/nbm.5239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised <sup>129</sup>Xe gas exchange in the lung. Here, we evaluate the current <sup>129</sup>Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5239\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5239\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5239","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

通过敏感性分析,可以确定有影响的参数并优化模型组成。这种方法以前从未系统地应用于描述肺内超极化 129Xe 气体交换的模型。在此,我们对当前的 129Xe 气体交换模型进行了评估,以评估其识别肺血管功能和肺微结构变化的精确性。我们使用既定的单变量方法和参数相互作用散点图来评估敏感性。我们将这些方法应用于 Patz 等人描述的模型和氙交换模型 (MOXE),检查它们测量以下方面的能力:i) 重要性(等级);ii) 时间依赖性;iii) 各参数在健康和疾病范围内的交互作用。单变量方法和散点图分析表明,两个评估模型中常见参数的重要性结果始终相似。肺泡表面积与体积比被确定为模型信号最敏感的参数。肺泡-毛细血管屏障厚度被确定为 MOXE 模型的低敏感参数。至少 200 毫秒的采集窗口有效地证明了模型对大多数参数的敏感性。散点图显示了两种模型的交互效应,影响了输出变异性和灵敏度。我们的灵敏度分析对 Patz 等人描述的模型和 MOXE 模型中的参数进行了排序。MOXE 模型对肺泡-毛细血管屏障厚度的灵敏度较低,这说明需要设计优化的采集方案来测量这一参数。参数交互效应的存在凸显了在解释模型输出结果时需要小心谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity analysis of models of gas exchange for lung hyperpolarised 129Xe MR.

Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort. Improvement of MRS at ultra-high field using a wireless RF array. Very-long T2-weighted imaging of the non-lesional brain tissue in multiple sclerosis patients. Simultaneous whole-liver water T 1 and T 2 mapping with isotropic resolution during free-breathing. Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1