磁力笼

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-10-09 Epub Date: 2024-08-26 DOI:10.1098/rsta.2023.0407
E Nasr, S C Wimbush, P Noonan, P Harris, R Gowland, A Petrov
{"title":"磁力笼","authors":"E Nasr, S C Wimbush, P Noonan, P Harris, R Gowland, A Petrov","doi":"10.1098/rsta.2023.0407","DOIUrl":null,"url":null,"abstract":"<p><p>The Spherical Tokamak for Energy Production (STEP) requires high-field magnet designs and has therefore adopted the REBCO-based high-temperature superconductor (HTS) as its current carrier. The HTS enables the toroidal field (TF) coils to be remountable, which unlocks STEP's vertical maintenance approach; however, remountable joints, approximately 18 GJ of stored energy and limited space down the centre of a spherical tokamak, make the TF coils the most challenging. STEP has pursued a passive approach to TF coil quench protection in order to limit coil terminal voltage. Initial results suggest that a solution may rely on tuning internal coil resistance coupled with actively powered heaters. The pre-conceptual inter-coil structure demonstrates acceptable stresses and deflections under steady-state operating conditions and preliminary fault scenarios, and loads are distributed to limit the tensile force on the TF centre rod. Finally, the HTS must operate reliably in a high radiation environment and endure high neutron fluences, ensuring commercially relevant magnet lifetimes. Initial experiments indicate that instantaneous gamma irradiation of HTS has no negative impact on current carrying capacity. Experimental programmes are underway to cold irradiate HTS to fusion-relevant fluences and to develop a method of assuring tape irradiation tolerance using oxygen ions as an analogue for neutrons.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423674/pdf/","citationCount":"0","resultStr":"{\"title\":\"The magnetic cage.\",\"authors\":\"E Nasr, S C Wimbush, P Noonan, P Harris, R Gowland, A Petrov\",\"doi\":\"10.1098/rsta.2023.0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Spherical Tokamak for Energy Production (STEP) requires high-field magnet designs and has therefore adopted the REBCO-based high-temperature superconductor (HTS) as its current carrier. The HTS enables the toroidal field (TF) coils to be remountable, which unlocks STEP's vertical maintenance approach; however, remountable joints, approximately 18 GJ of stored energy and limited space down the centre of a spherical tokamak, make the TF coils the most challenging. STEP has pursued a passive approach to TF coil quench protection in order to limit coil terminal voltage. Initial results suggest that a solution may rely on tuning internal coil resistance coupled with actively powered heaters. The pre-conceptual inter-coil structure demonstrates acceptable stresses and deflections under steady-state operating conditions and preliminary fault scenarios, and loads are distributed to limit the tensile force on the TF centre rod. Finally, the HTS must operate reliably in a high radiation environment and endure high neutron fluences, ensuring commercially relevant magnet lifetimes. Initial experiments indicate that instantaneous gamma irradiation of HTS has no negative impact on current carrying capacity. Experimental programmes are underway to cold irradiate HTS to fusion-relevant fluences and to develop a method of assuring tape irradiation tolerance using oxygen ions as an analogue for neutrons.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0407\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0407","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

用于能源生产的球形托卡马克(STEP)需要高磁场磁体设计,因此采用了基于 REBCO 的高温超导体(HTS)作为当前的载体。高温超导体使环形磁场(TF)线圈可以重新安装,从而开启了 STEP 的垂直维护方法;然而,可重新安装的接头、约 18 GJ 的存储能量以及球形托卡马克中心的有限空间,使 TF 线圈成为最具挑战性的部件。STEP 一直在寻求一种被动的 TF 线圈淬火保护方法,以限制线圈终端电压。初步结果表明,解决方案可能依赖于调整线圈内部电阻和主动加热器。预先构想的线圈间结构在稳态运行条件和初步故障情况下显示出可接受的应力和挠度,负载分布可限制 TF 中心杆上的拉力。最后,HTS 必须在高辐射环境下可靠运行,并承受高中子通量,确保磁体的商业寿命。初步实验表明,对 HTS 进行瞬时伽马辐照不会对电流承载能力产生负面影响。目前正在开展实验计划,将 HTS 冷辐照到与核聚变相关的通量,并开发一种使用氧离子作为中子模拟物来确保磁带耐受辐照的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The magnetic cage.

The Spherical Tokamak for Energy Production (STEP) requires high-field magnet designs and has therefore adopted the REBCO-based high-temperature superconductor (HTS) as its current carrier. The HTS enables the toroidal field (TF) coils to be remountable, which unlocks STEP's vertical maintenance approach; however, remountable joints, approximately 18 GJ of stored energy and limited space down the centre of a spherical tokamak, make the TF coils the most challenging. STEP has pursued a passive approach to TF coil quench protection in order to limit coil terminal voltage. Initial results suggest that a solution may rely on tuning internal coil resistance coupled with actively powered heaters. The pre-conceptual inter-coil structure demonstrates acceptable stresses and deflections under steady-state operating conditions and preliminary fault scenarios, and loads are distributed to limit the tensile force on the TF centre rod. Finally, the HTS must operate reliably in a high radiation environment and endure high neutron fluences, ensuring commercially relevant magnet lifetimes. Initial experiments indicate that instantaneous gamma irradiation of HTS has no negative impact on current carrying capacity. Experimental programmes are underway to cold irradiate HTS to fusion-relevant fluences and to develop a method of assuring tape irradiation tolerance using oxygen ions as an analogue for neutrons.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Alkali metal cations enhance CO2 reduction by a Co molecular complex in a bipolar membrane electrolyzer. An alternative to petrochemicals: biomass electrovalorization. Carbon dioxide and hydrogen as building blocks for a sustainable interface of energy and chemistry. CO2 hydrogenation to methanol over Pt functionalized Hf-UiO-67 versus Zr-UiO-67. Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1