开发基于电子病历的五步算法,以识别妊娠期阿片类药物使用障碍患者。

Q4 Medicine Journal of registry management Pub Date : 2024-01-01
Kimberly Fryer, Chinyere N Reid, Chaitanya Chaphalkar, Jennifer Marshall, Laura Szalacha, Kimberly Johnson, Tanner Wright, Caitlin Read, Ayesha Khan, Anna Wilson, Meera Ratani, Kaitlyn Cox, Angela Tavolieri, Melanny Sampayo, Rachel Su, Kelly Campbell, Jason L Salemi
{"title":"开发基于电子病历的五步算法,以识别妊娠期阿片类药物使用障碍患者。","authors":"Kimberly Fryer, Chinyere N Reid, Chaitanya Chaphalkar, Jennifer Marshall, Laura Szalacha, Kimberly Johnson, Tanner Wright, Caitlin Read, Ayesha Khan, Anna Wilson, Meera Ratani, Kaitlyn Cox, Angela Tavolieri, Melanny Sampayo, Rachel Su, Kelly Campbell, Jason L Salemi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop and validate an algorithm for the identification of opioid use disorder (OUD) in pregnant patients using electronic medical record (EMR) data.</p><p><strong>Materials and methods: </strong>A cohort of pregnant patients from a single institution was used to develop and validate the algorithm. Five algorithm components were used, and chart reviews were conducted to confirm OUD diagnoses based on established criteria. Positive predictive values (PPV) of each of the algorithm's components were assessed.</p><p><strong>Results: </strong>Of the 334 charts identified by the algorithm, 256 true cases were confirmed. The overall PPV of the algorithm was 76.6%, with 100% accuracy for outpatient medication lists, and high PPVs ranging from 81.3% to 93.4% across other algorithm components.</p><p><strong>Discussion and conclusion: </strong>The study highlights the significance of a multifaceted approach in identifying OUD among pregnant patients, aiming to improve patient care and target interventions for patients at risk.</p>","PeriodicalId":39246,"journal":{"name":"Journal of registry management","volume":"51 2","pages":"69-74"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a 5-Step Electronic Medical Record-Based Algorithm to Identify Patients with Opioid Use Disorder in Pregnancy.\",\"authors\":\"Kimberly Fryer, Chinyere N Reid, Chaitanya Chaphalkar, Jennifer Marshall, Laura Szalacha, Kimberly Johnson, Tanner Wright, Caitlin Read, Ayesha Khan, Anna Wilson, Meera Ratani, Kaitlyn Cox, Angela Tavolieri, Melanny Sampayo, Rachel Su, Kelly Campbell, Jason L Salemi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to develop and validate an algorithm for the identification of opioid use disorder (OUD) in pregnant patients using electronic medical record (EMR) data.</p><p><strong>Materials and methods: </strong>A cohort of pregnant patients from a single institution was used to develop and validate the algorithm. Five algorithm components were used, and chart reviews were conducted to confirm OUD diagnoses based on established criteria. Positive predictive values (PPV) of each of the algorithm's components were assessed.</p><p><strong>Results: </strong>Of the 334 charts identified by the algorithm, 256 true cases were confirmed. The overall PPV of the algorithm was 76.6%, with 100% accuracy for outpatient medication lists, and high PPVs ranging from 81.3% to 93.4% across other algorithm components.</p><p><strong>Discussion and conclusion: </strong>The study highlights the significance of a multifaceted approach in identifying OUD among pregnant patients, aiming to improve patient care and target interventions for patients at risk.</p>\",\"PeriodicalId\":39246,\"journal\":{\"name\":\"Journal of registry management\",\"volume\":\"51 2\",\"pages\":\"69-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of registry management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of registry management","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在利用电子病历(EMR)数据,开发并验证一种识别妊娠期患者阿片类药物使用障碍(OUD)的算法:本研究旨在利用电子病历(EMR)数据,开发并验证一种识别孕妇阿片类药物使用障碍(OUD)的算法:材料与方法:研究人员利用一家医疗机构的一组妊娠期患者数据开发并验证了该算法。使用了五种算法组件,并进行了病历审查,以根据既定标准确认 OUD 诊断。对算法各组成部分的阳性预测值(PPV)进行了评估:结果:在该算法确定的 334 份病历中,有 256 个真实病例得到确诊。该算法的总体PPV值为76.6%,其中门诊用药清单的准确率为100%,其他算法组成部分的PPV值从81.3%到93.4%不等:讨论与结论:这项研究强调了采用多方面方法识别妊娠期患者中的 OUD 的重要性,其目的是改善患者护理并对高危患者进行有针对性的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a 5-Step Electronic Medical Record-Based Algorithm to Identify Patients with Opioid Use Disorder in Pregnancy.

Objectives: This study aimed to develop and validate an algorithm for the identification of opioid use disorder (OUD) in pregnant patients using electronic medical record (EMR) data.

Materials and methods: A cohort of pregnant patients from a single institution was used to develop and validate the algorithm. Five algorithm components were used, and chart reviews were conducted to confirm OUD diagnoses based on established criteria. Positive predictive values (PPV) of each of the algorithm's components were assessed.

Results: Of the 334 charts identified by the algorithm, 256 true cases were confirmed. The overall PPV of the algorithm was 76.6%, with 100% accuracy for outpatient medication lists, and high PPVs ranging from 81.3% to 93.4% across other algorithm components.

Discussion and conclusion: The study highlights the significance of a multifaceted approach in identifying OUD among pregnant patients, aiming to improve patient care and target interventions for patients at risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of registry management
Journal of registry management Medicine-Medicine (all)
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
JRM Editors Past and Present (1995-2024). Cancer Registry Enrichment via Linkage with Hospital-Based Electronic Medical Records: A Pilot Investigation. Health Care Utilization Prior to Ovarian Cancer Diagnosis in Publicly Insured Individuals in New York State. Letter from the Editor. Planning for the Future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1