{"title":"BDNF-ERK/MAPK轴可减少大脑皮层神经元中磷酸酶和肌动蛋白调节因子1、2和3(PHACTR1、2和3)mRNA的表达。","authors":"Daisuke Ihara, Ryotaro Oishi, Shiho Kasahara, Aimi Yamamoto, Maki Kaito, Akiko Tabuchi","doi":"10.5582/ddt.2024.01048","DOIUrl":null,"url":null,"abstract":"<p><p>Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.</p>","PeriodicalId":47494,"journal":{"name":"Drug Discoveries and Therapeutics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BDNF-ERK/MAPK axis reduces phosphatase and actin regulator1, 2 and 3 (PHACTR1, 2 and 3) mRNA expressions in cortical neurons.\",\"authors\":\"Daisuke Ihara, Ryotaro Oishi, Shiho Kasahara, Aimi Yamamoto, Maki Kaito, Akiko Tabuchi\",\"doi\":\"10.5582/ddt.2024.01048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.</p>\",\"PeriodicalId\":47494,\"journal\":{\"name\":\"Drug Discoveries and Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discoveries and Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5582/ddt.2024.01048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discoveries and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/ddt.2024.01048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The BDNF-ERK/MAPK axis reduces phosphatase and actin regulator1, 2 and 3 (PHACTR1, 2 and 3) mRNA expressions in cortical neurons.
Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.