Keiko W Wilkins, Joanne Y Yew, Meredith Seeley, Robert H Richmond
{"title":"微塑料渗滤液会对珊瑚 Montipora capitata 的受精产生负面影响。","authors":"Keiko W Wilkins, Joanne Y Yew, Meredith Seeley, Robert H Richmond","doi":"10.1093/icb/icae143","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic pollution is an emerging stressor of concern to coral reef ecosystems, which are already threatened by additional global and local level anthropogenic stressors. The effects of ingesting microplastics alone on corals have been well studied, but the effects of the chemical composition of these particles have been understudied. Many microplastic-associated chemicals are endocrine disrupters potentially posing a threat to organismal reproduction. Therefore, the goal of this study was to determine if differences exist between the effects of microplastics themselves and microplastic leachate on Montipora capitata fertilization due to changes in fatty acid quantity and composition. Assays were conducted two years in a row which exposed M. capitata gamete bundles to either one of four types of recently manufactured, virgin microspheres (nylon, polypropylene, high-density polyethylene, or low-density polyethylene) at three concentrations (50, 100, or 200 particles/L) or microplastic leachates, presumably including plastic additives from these microspheres. Gamete fertilization was not impacted by microplastic particles themselves, but some of the microplastic leachate treatments with the same polymer type significantly reduced fertilization rates for M. capitata. Additionally, a total of 17 fatty acids were seen in both years, but neither fatty acid quantity nor composition correlated with observed declines in fertilization. Instead, fertilization and fatty acid data independently varied by concentration and polymer type, likely due to the presence of different chemicals. This study is the first to directly test the toxicity of microplastic leachate to coral reproduction. These findings show that microplastic-associated chemicals are an important stressor affecting successful coral fertilization and fatty acid quantity and composition and provide evidence for the negative effects of microplastic leachate to coral reproduction. Thus, plastic additives could pose an additional threat to coral replenishment and persistence in coral reef ecosystems.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microplastic Leachate Negatively Affects Fertilization in the Coral Montipora capitata.\",\"authors\":\"Keiko W Wilkins, Joanne Y Yew, Meredith Seeley, Robert H Richmond\",\"doi\":\"10.1093/icb/icae143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastic pollution is an emerging stressor of concern to coral reef ecosystems, which are already threatened by additional global and local level anthropogenic stressors. The effects of ingesting microplastics alone on corals have been well studied, but the effects of the chemical composition of these particles have been understudied. Many microplastic-associated chemicals are endocrine disrupters potentially posing a threat to organismal reproduction. Therefore, the goal of this study was to determine if differences exist between the effects of microplastics themselves and microplastic leachate on Montipora capitata fertilization due to changes in fatty acid quantity and composition. Assays were conducted two years in a row which exposed M. capitata gamete bundles to either one of four types of recently manufactured, virgin microspheres (nylon, polypropylene, high-density polyethylene, or low-density polyethylene) at three concentrations (50, 100, or 200 particles/L) or microplastic leachates, presumably including plastic additives from these microspheres. Gamete fertilization was not impacted by microplastic particles themselves, but some of the microplastic leachate treatments with the same polymer type significantly reduced fertilization rates for M. capitata. Additionally, a total of 17 fatty acids were seen in both years, but neither fatty acid quantity nor composition correlated with observed declines in fertilization. Instead, fertilization and fatty acid data independently varied by concentration and polymer type, likely due to the presence of different chemicals. This study is the first to directly test the toxicity of microplastic leachate to coral reproduction. These findings show that microplastic-associated chemicals are an important stressor affecting successful coral fertilization and fatty acid quantity and composition and provide evidence for the negative effects of microplastic leachate to coral reproduction. Thus, plastic additives could pose an additional threat to coral replenishment and persistence in coral reef ecosystems.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae143\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Microplastic Leachate Negatively Affects Fertilization in the Coral Montipora capitata.
Microplastic pollution is an emerging stressor of concern to coral reef ecosystems, which are already threatened by additional global and local level anthropogenic stressors. The effects of ingesting microplastics alone on corals have been well studied, but the effects of the chemical composition of these particles have been understudied. Many microplastic-associated chemicals are endocrine disrupters potentially posing a threat to organismal reproduction. Therefore, the goal of this study was to determine if differences exist between the effects of microplastics themselves and microplastic leachate on Montipora capitata fertilization due to changes in fatty acid quantity and composition. Assays were conducted two years in a row which exposed M. capitata gamete bundles to either one of four types of recently manufactured, virgin microspheres (nylon, polypropylene, high-density polyethylene, or low-density polyethylene) at three concentrations (50, 100, or 200 particles/L) or microplastic leachates, presumably including plastic additives from these microspheres. Gamete fertilization was not impacted by microplastic particles themselves, but some of the microplastic leachate treatments with the same polymer type significantly reduced fertilization rates for M. capitata. Additionally, a total of 17 fatty acids were seen in both years, but neither fatty acid quantity nor composition correlated with observed declines in fertilization. Instead, fertilization and fatty acid data independently varied by concentration and polymer type, likely due to the presence of different chemicals. This study is the first to directly test the toxicity of microplastic leachate to coral reproduction. These findings show that microplastic-associated chemicals are an important stressor affecting successful coral fertilization and fatty acid quantity and composition and provide evidence for the negative effects of microplastic leachate to coral reproduction. Thus, plastic additives could pose an additional threat to coral replenishment and persistence in coral reef ecosystems.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.