五种蜥蜴在不同环境条件下的亚细胞能量代谢分析

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology Pub Date : 2024-08-22 DOI:10.1016/j.cbpa.2024.111729
Anamarija Žagar , Urban Dajčman , Rodrigo Megía-Palma , Tatjana Simčič , Frederico M. Barroso , Senka Baškiera , Miguel A. Carretero
{"title":"五种蜥蜴在不同环境条件下的亚细胞能量代谢分析","authors":"Anamarija Žagar ,&nbsp;Urban Dajčman ,&nbsp;Rodrigo Megía-Palma ,&nbsp;Tatjana Simčič ,&nbsp;Frederico M. Barroso ,&nbsp;Senka Baškiera ,&nbsp;Miguel A. Carretero","doi":"10.1016/j.cbpa.2024.111729","DOIUrl":null,"url":null,"abstract":"<div><p>Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures – 28 °C, 30 °C, 32 °C and 34 °C – covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q<sub>10</sub>) and Arrhenius activation energy (E<sub>a</sub>) was recorded in the high-mountain species <em>Iberolacerta monticola</em>.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"297 ","pages":"Article 111729"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324001569/pdfft?md5=491f3fca2d61ec57ba5674a2e3ed5346&pid=1-s2.0-S1095643324001569-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of subcellular energy metabolism in five Lacertidae lizards across varied environmental conditions\",\"authors\":\"Anamarija Žagar ,&nbsp;Urban Dajčman ,&nbsp;Rodrigo Megía-Palma ,&nbsp;Tatjana Simčič ,&nbsp;Frederico M. Barroso ,&nbsp;Senka Baškiera ,&nbsp;Miguel A. Carretero\",\"doi\":\"10.1016/j.cbpa.2024.111729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures – 28 °C, 30 °C, 32 °C and 34 °C – covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q<sub>10</sub>) and Arrhenius activation energy (E<sub>a</sub>) was recorded in the high-mountain species <em>Iberolacerta monticola</em>.</p></div>\",\"PeriodicalId\":55237,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"volume\":\"297 \",\"pages\":\"Article 111729\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001569/pdfft?md5=491f3fca2d61ec57ba5674a2e3ed5346&pid=1-s2.0-S1095643324001569-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001569\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001569","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有氧呼吸是大多数真核生物的主要能量来源,高效的线粒体能量转移在很大程度上影响着生物体的健康状况。为了在环境变化中生存,细胞进化到可以调整其生物化学。因此,在亚细胞水平测量能量代谢可以加深我们对个体表现、种群动态和物种分布范围的了解。我们在从海平面到海拔2000米的不同海拔高度采样的五个蜥蜴物种中研究了亚细胞水平的三个重要代谢特征。我们检测了血红蛋白浓度、氧化应激的两个标志物(过氧化氢酶活性和羰基浓度)以及亚细胞水平的最大代谢呼吸速率(电子传输系统的潜在代谢活性)。对实验室适应的成年雄性蜥蜴的性状进行了分析,以研究其对当地采样地点多变环境条件的适应性代谢反应。在28 °C、30 °C、32 °C和34 °C四种温度下测量了细胞水平的潜在代谢活动,这四种温度涵盖了所研究物种喜欢的体温范围。不同物种的血红蛋白含量、羰基浓度和潜在代谢活性没有显著差异。在过氧化氢酶活性方面发现了种间差异,所有五个物种的潜在代谢活性都随着温度的升高而增加。高山物种 Iberolacerta monticola 的代谢率随温度(Q10)和阿伦尼乌斯活化能(Ea)的变化最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of subcellular energy metabolism in five Lacertidae lizards across varied environmental conditions

Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures – 28 °C, 30 °C, 32 °C and 34 °C – covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q10) and Arrhenius activation energy (Ea) was recorded in the high-mountain species Iberolacerta monticola.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
期刊最新文献
Bioimaging and-the future of whole-organismal developmental physiology. Kinetic comparisons of jaw opening, jaw closing and locomotor muscles. Short communication: Can Vitamin D be supplied from the large intestine? Small heat shock proteins as relevant biomarkers for anthropogenic stressors in earthworms. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1