基因检测和机器学习 AXIN2 变异显性在非综合征性牙齿发育不全中的作用是什么?一项针对正畸治疗患者的病例对照研究。

IF 4.8 2区 医学 Q1 Dentistry Progress in Orthodontics Pub Date : 2024-08-26 DOI:10.1186/s40510-024-00532-4
Nora Alhazmi, Ali Alaqla, Bader Almuzzaini, Mohammed Aldrees, Ghaida Alnaqa, Farah Almasoud, Omar Aldibasi, Hala Alshamlan
{"title":"基因检测和机器学习 AXIN2 变异显性在非综合征性牙齿发育不全中的作用是什么?一项针对正畸治疗患者的病例对照研究。","authors":"Nora Alhazmi, Ali Alaqla, Bader Almuzzaini, Mohammed Aldrees, Ghaida Alnaqa, Farah Almasoud, Omar Aldibasi, Hala Alshamlan","doi":"10.1186/s40510-024-00532-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our case-control study included 106 participants (aged 8-50 years; 64 females and 42 males), comprising 54 hypodontia cases and 52 controls. We utilized TaqMan<sup>TM</sup> Real-Time Polymerase Chain Reaction and allelic genotyping to analyze three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk by using odds ratios (ORs) for multiple target variables.</p><p><strong>Results: </strong>Multivariate logistic regression indicated a significant association between homozygous AXIN2 rs2240308 and the hypodontia phenotype (ORs [95% confidence interval] 2.893 [1.28-6.53]). Machine-learning algorithms revealed that the AXIN2 homozygous (A/A) genotype is a genetic risk factor for hypodontia of teeth #12, #22, and #35, whereas the AXIN2 homozygous (G/G) genotype increases the risk for hypodontia of teeth #22, #35, and #45. The PAX9 homozygous (C/C) genotype is associated with an increased risk for hypodontia of teeth #22 and #35.</p><p><strong>Conclusions: </strong>Our study confirms a link between AXIN2 and hypodontia in Saudi orthodontic patients and suggests that combining machine-learning models with SNP analysis of saliva samples can effectively identify individuals with non-syndromic hypodontia.</p>","PeriodicalId":56071,"journal":{"name":"Progress in Orthodontics","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345341/pdf/","citationCount":"0","resultStr":"{\"title\":\"What could be the role of genetic tests and machine learning of AXIN2 variant dominance in non-syndromic hypodontia? A case-control study in orthodontically treated patients.\",\"authors\":\"Nora Alhazmi, Ali Alaqla, Bader Almuzzaini, Mohammed Aldrees, Ghaida Alnaqa, Farah Almasoud, Omar Aldibasi, Hala Alshamlan\",\"doi\":\"10.1186/s40510-024-00532-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our case-control study included 106 participants (aged 8-50 years; 64 females and 42 males), comprising 54 hypodontia cases and 52 controls. We utilized TaqMan<sup>TM</sup> Real-Time Polymerase Chain Reaction and allelic genotyping to analyze three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk by using odds ratios (ORs) for multiple target variables.</p><p><strong>Results: </strong>Multivariate logistic regression indicated a significant association between homozygous AXIN2 rs2240308 and the hypodontia phenotype (ORs [95% confidence interval] 2.893 [1.28-6.53]). Machine-learning algorithms revealed that the AXIN2 homozygous (A/A) genotype is a genetic risk factor for hypodontia of teeth #12, #22, and #35, whereas the AXIN2 homozygous (G/G) genotype increases the risk for hypodontia of teeth #22, #35, and #45. The PAX9 homozygous (C/C) genotype is associated with an increased risk for hypodontia of teeth #22 and #35.</p><p><strong>Conclusions: </strong>Our study confirms a link between AXIN2 and hypodontia in Saudi orthodontic patients and suggests that combining machine-learning models with SNP analysis of saliva samples can effectively identify individuals with non-syndromic hypodontia.</p>\",\"PeriodicalId\":56071,\"journal\":{\"name\":\"Progress in Orthodontics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Orthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40510-024-00532-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40510-024-00532-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0

摘要

背景:牙列不齐是人类最常见的牙齿畸形,主要归因于遗传因素。尽管全基因组关联研究(GWAS)已经发现了与牙列不齐相关的单核苷酸多态性(SNP),但由于特定人群的 SNP 变异,遗传风险评估仍具有挑战性。因此,我们旨在进行一项遗传分析,并开发一种基于机器学习的预测模型,以研究之前报道的沙特阿拉伯人群中的 SNP 与牙列不齐之间的关联。我们的病例对照研究纳入了 106 名参与者(年龄在 8-50 岁之间;64 名女性和 42 名男性),其中包括 54 名乳齿发育不全病例和 52 名对照者。我们利用 TaqManTM 实时聚合酶链式反应和等位基因分型技术分析了未刺激唾液样本中的三个选定 SNPs(AXIN2:rs2240308、PAX9:rs61754301 和 MSX1:rs12532)。通过使用多个目标变量的几率比(ORs),采用卡方检验、多项式逻辑回归和机器学习技术评估遗传风险:结果:多变量逻辑回归表明,同源 AXIN2 rs2240308 与牙列不齐表型之间存在显著关联(ORs [95% 置信区间] 2.893 [1.28-6.53])。机器学习算法显示,AXIN2 同源(A/A)基因型是 12 号牙、22 号牙和 35 号牙软骨发育不全的遗传风险因素,而 AXIN2 同源(G/G)基因型会增加 22 号牙、35 号牙和 45 号牙软骨发育不全的风险。PAX9同源(C/C)基因型与22号和35号牙齿发育不全的风险增加有关:我们的研究证实了 AXIN2 与沙特正畸患者牙齿发育不全之间的联系,并表明将机器学习模型与唾液样本的 SNP 分析相结合可有效识别非综合征性牙齿发育不全患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What could be the role of genetic tests and machine learning of AXIN2 variant dominance in non-syndromic hypodontia? A case-control study in orthodontically treated patients.

Background: Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our case-control study included 106 participants (aged 8-50 years; 64 females and 42 males), comprising 54 hypodontia cases and 52 controls. We utilized TaqManTM Real-Time Polymerase Chain Reaction and allelic genotyping to analyze three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk by using odds ratios (ORs) for multiple target variables.

Results: Multivariate logistic regression indicated a significant association between homozygous AXIN2 rs2240308 and the hypodontia phenotype (ORs [95% confidence interval] 2.893 [1.28-6.53]). Machine-learning algorithms revealed that the AXIN2 homozygous (A/A) genotype is a genetic risk factor for hypodontia of teeth #12, #22, and #35, whereas the AXIN2 homozygous (G/G) genotype increases the risk for hypodontia of teeth #22, #35, and #45. The PAX9 homozygous (C/C) genotype is associated with an increased risk for hypodontia of teeth #22 and #35.

Conclusions: Our study confirms a link between AXIN2 and hypodontia in Saudi orthodontic patients and suggests that combining machine-learning models with SNP analysis of saliva samples can effectively identify individuals with non-syndromic hypodontia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Orthodontics
Progress in Orthodontics Dentistry-Orthodontics
CiteScore
7.30
自引率
4.20%
发文量
45
审稿时长
13 weeks
期刊介绍: Progress in Orthodontics is a fully open access, international journal owned by the Italian Society of Orthodontics and published under the brand SpringerOpen. The Society is currently covering all publication costs so there are no article processing charges for authors. It is a premier journal of international scope that fosters orthodontic research, including both basic research and development of innovative clinical techniques, with an emphasis on the following areas: • Mechanisms to improve orthodontics • Clinical studies and control animal studies • Orthodontics and genetics, genomics • Temporomandibular joint (TMJ) control clinical trials • Efficacy of orthodontic appliances and animal models • Systematic reviews and meta analyses • Mechanisms to speed orthodontic treatment Progress in Orthodontics will consider for publication only meritorious and original contributions. These may be: • Original articles reporting the findings of clinical trials, clinically relevant basic scientific investigations, or novel therapeutic or diagnostic systems • Review articles on current topics • Articles on novel techniques and clinical tools • Articles of contemporary interest
期刊最新文献
The role of orthodontists in the multidisciplinary management of obstructive sleep apnea. Polymerization kinetics of 3D-printed orthodontic aligners under different UV post-curing conditions. Comparison of AI-assisted cephalometric analysis and orthodontist-performed digital tracing analysis. Prevalence of psychosocial findings and their correlation with TMD symptoms in an adult population sample. Breaking a dogma: orthodontic tooth movement alters systemic immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1