利用光谱弥散核磁共振成像量化多室流动。

ArXiv Pub Date : 2024-08-12
Mira M Liu, Jonathan Dyke, Thomas Gladytz, Jonas Jasse, Ian Bolger, Sergio Calle, Swathi Pavaluri, Tanner Crews, Surya Seshan, Steven Salvatore, Isaac Stillman, Thangamani Muthukumar, Bachir Taouli, Samira Farouk, Sara Lewis, Octavia Bane
{"title":"利用光谱弥散核磁共振成像量化多室流动。","authors":"Mira M Liu, Jonathan Dyke, Thomas Gladytz, Jonas Jasse, Ian Bolger, Sergio Calle, Swathi Pavaluri, Tanner Crews, Surya Seshan, Steven Salvatore, Isaac Stillman, Thangamani Muthukumar, Bachir Taouli, Samira Farouk, Sara Lewis, Octavia Bane","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Estimation of multi-compartment intravoxel 'flow' in <i>fD</i> in ml/100g/min with multi-b-value diffusion weighted imaging and a multi-Gaussian model in the kidneys.</p><p><strong>Theory and methods: </strong>A multi-Gaussian model of intravoxel flow using water transport time to quantify <math><mi>f</mi> <mi>D</mi></math> (ml/100g/min) is presented and simulated. Multi-compartment anisotropic DWI signal is simulated with Rician noise and SNR=50 and analyzed with a rigid bi-exponential, a rigid tri-exponential and diffusion spectrum imaging model of intravoxel incoherent motion (spectral diffusion) to study extraction of multi-compartment flow. The regularization parameter for spectral diffusion is varied to study the impact on the resulting spectrum and computation speed. The application is demonstrated in a two-center study of 54 kidney allografts with 9 b-value advanced DWI that were split by function (CKD-EPI 2021 eGFR<45ml/min/1.73m<sup>2</sup>) and fibrosis (Banff 2017 interstitial fibrosis and tubular atrophy score 0-6) to demonstrate multi-compartment flow of various kidney pathologies.</p><p><strong>Results: </strong>Simulation of anisotropic multi-compartment flow from spectral diffusion demonstrated strong correlation to truth for both three-compartment anisotropic diffusion ( <math><mi>y</mi> <mo>=</mo> <mn>1.08</mn> <mi>x</mi> <mo>+</mo> <mn>0.1</mn> <mo>,</mo> <mspace></mspace> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mspace></mspace> <mn>0.71</mn></math> ) and two-compartment anisotropic diffusion ( <math><mi>y</mi> <mo>=</mo> <mn>0.91</mn> <mo>+</mo> <mn>0.6</mn> <mo>,</mo> <mspace></mspace> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mn>0.74</mn></math> ), outperforming rigid models in cases of variable compartment number. Use of a fixed regularization parameter set to <math><mi>λ</mi> <mo>=</mo> <mn>0.1</mn></math> increased computation up to 208-fold and agreed with voxel-wise cross-validated regularization (concordance correlation coefficient=0.99). Spectral diffusion of renal allografts showed decreasing trend of tubular and vascular flow with higher levels of fibrosis, and significant increase in tissue parenchyma flow (f-stat=3.86, p=0.02). Tubular <math><mi>f</mi> <mi>D</mi></math> was significantly decreased in allografts with impaired function (eGFR<45ml/min/1.73m<sup>2</sup>)(Mann-Whitney U t-stat=-2.14, p=0.04).</p><p><strong>Conclusions: </strong>Quantitative multi-compartment intravoxel 'flow' can be estimated in ml/100g/min with <math><mi>f</mi> <mi>D</mi></math> from multi-Gaussian diffusion with water transport time, even with moderate anisotropy such as in kidneys. The use of spectral diffusion with a multi-Gaussian model and a fixed regularization parameter is particularly promising in organs such as the kidney with variable numbers of physiologic compartments.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343220/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantification of Multi-Compartment Flow with Spectral Diffusion MRI.\",\"authors\":\"Mira M Liu, Jonathan Dyke, Thomas Gladytz, Jonas Jasse, Ian Bolger, Sergio Calle, Swathi Pavaluri, Tanner Crews, Surya Seshan, Steven Salvatore, Isaac Stillman, Thangamani Muthukumar, Bachir Taouli, Samira Farouk, Sara Lewis, Octavia Bane\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Estimation of multi-compartment intravoxel 'flow' in <i>fD</i> in ml/100g/min with multi-b-value diffusion weighted imaging and a multi-Gaussian model in the kidneys.</p><p><strong>Theory and methods: </strong>A multi-Gaussian model of intravoxel flow using water transport time to quantify <math><mi>f</mi> <mi>D</mi></math> (ml/100g/min) is presented and simulated. Multi-compartment anisotropic DWI signal is simulated with Rician noise and SNR=50 and analyzed with a rigid bi-exponential, a rigid tri-exponential and diffusion spectrum imaging model of intravoxel incoherent motion (spectral diffusion) to study extraction of multi-compartment flow. The regularization parameter for spectral diffusion is varied to study the impact on the resulting spectrum and computation speed. The application is demonstrated in a two-center study of 54 kidney allografts with 9 b-value advanced DWI that were split by function (CKD-EPI 2021 eGFR<45ml/min/1.73m<sup>2</sup>) and fibrosis (Banff 2017 interstitial fibrosis and tubular atrophy score 0-6) to demonstrate multi-compartment flow of various kidney pathologies.</p><p><strong>Results: </strong>Simulation of anisotropic multi-compartment flow from spectral diffusion demonstrated strong correlation to truth for both three-compartment anisotropic diffusion ( <math><mi>y</mi> <mo>=</mo> <mn>1.08</mn> <mi>x</mi> <mo>+</mo> <mn>0.1</mn> <mo>,</mo> <mspace></mspace> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mspace></mspace> <mn>0.71</mn></math> ) and two-compartment anisotropic diffusion ( <math><mi>y</mi> <mo>=</mo> <mn>0.91</mn> <mo>+</mo> <mn>0.6</mn> <mo>,</mo> <mspace></mspace> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mn>0.74</mn></math> ), outperforming rigid models in cases of variable compartment number. Use of a fixed regularization parameter set to <math><mi>λ</mi> <mo>=</mo> <mn>0.1</mn></math> increased computation up to 208-fold and agreed with voxel-wise cross-validated regularization (concordance correlation coefficient=0.99). Spectral diffusion of renal allografts showed decreasing trend of tubular and vascular flow with higher levels of fibrosis, and significant increase in tissue parenchyma flow (f-stat=3.86, p=0.02). Tubular <math><mi>f</mi> <mi>D</mi></math> was significantly decreased in allografts with impaired function (eGFR<45ml/min/1.73m<sup>2</sup>)(Mann-Whitney U t-stat=-2.14, p=0.04).</p><p><strong>Conclusions: </strong>Quantitative multi-compartment intravoxel 'flow' can be estimated in ml/100g/min with <math><mi>f</mi> <mi>D</mi></math> from multi-Gaussian diffusion with water transport time, even with moderate anisotropy such as in kidneys. The use of spectral diffusion with a multi-Gaussian model and a fixed regularization parameter is particularly promising in organs such as the kidney with variable numbers of physiologic compartments.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用多b值扩散加权成像和多高斯模型估算肾脏中以ml/100g/min为单位的fD多室体内流量:介绍并模拟了利用水运输时间量化fD的多高斯模型。多室各向异性 DWI 信号是通过(1)刚性双指数模型、(2)刚性三指数模型和(3)体内非相干运动(频谱扩散)扩散谱成像模型进行模拟分析的。这项应用在一项双中心研究中得到了验证,研究对象是 54 例肾脏同种异体移植物,这些移植物具有 9 个 b 值的高级 DWI,并按功能(CKD-EPI 2021 eGFRR)进行了分割:对于模拟的三室各向异性扩散(y=1.08x+0.1,R2=0.71)和两室各向异性扩散(y=0.91x+0.6,R2=0.74),频谱扩散与真实情况有很强的相关性,在室数可变的情况下,频谱扩散优于刚性模型。使用{\lambda}=0.1的固定正则化参数,计算量增加了208倍,与体素交叉验证正则化结果一致(一致性相关系数=0.99)。肾脏同种异体组织的频谱扩散显示组织实质区的 fD 显著增加(f-stat=3.86,p=0.02)。功能受损的异体移植物肾小管fD明显下降(Mann-Whitney Utest t-stat=-2.14, p=0.04):结论:即使在肾脏等存在中度各向异性的情况下,也能通过多高斯扩散的 fD 以毫升/100 克/分钟为单位估算出定量的多腔静脉内血流。采用多高斯模型和固定正则化参数的频谱扩散技术,在肾脏等生理分区数量可变的器官中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantification of Multi-Compartment Flow with Spectral Diffusion MRI.

Purpose: Estimation of multi-compartment intravoxel 'flow' in fD in ml/100g/min with multi-b-value diffusion weighted imaging and a multi-Gaussian model in the kidneys.

Theory and methods: A multi-Gaussian model of intravoxel flow using water transport time to quantify f D (ml/100g/min) is presented and simulated. Multi-compartment anisotropic DWI signal is simulated with Rician noise and SNR=50 and analyzed with a rigid bi-exponential, a rigid tri-exponential and diffusion spectrum imaging model of intravoxel incoherent motion (spectral diffusion) to study extraction of multi-compartment flow. The regularization parameter for spectral diffusion is varied to study the impact on the resulting spectrum and computation speed. The application is demonstrated in a two-center study of 54 kidney allografts with 9 b-value advanced DWI that were split by function (CKD-EPI 2021 eGFR<45ml/min/1.73m2) and fibrosis (Banff 2017 interstitial fibrosis and tubular atrophy score 0-6) to demonstrate multi-compartment flow of various kidney pathologies.

Results: Simulation of anisotropic multi-compartment flow from spectral diffusion demonstrated strong correlation to truth for both three-compartment anisotropic diffusion ( y = 1.08 x + 0.1 , R 2 = 0.71 ) and two-compartment anisotropic diffusion ( y = 0.91 + 0.6 , R 2 = 0.74 ), outperforming rigid models in cases of variable compartment number. Use of a fixed regularization parameter set to λ = 0.1 increased computation up to 208-fold and agreed with voxel-wise cross-validated regularization (concordance correlation coefficient=0.99). Spectral diffusion of renal allografts showed decreasing trend of tubular and vascular flow with higher levels of fibrosis, and significant increase in tissue parenchyma flow (f-stat=3.86, p=0.02). Tubular f D was significantly decreased in allografts with impaired function (eGFR<45ml/min/1.73m2)(Mann-Whitney U t-stat=-2.14, p=0.04).

Conclusions: Quantitative multi-compartment intravoxel 'flow' can be estimated in ml/100g/min with f D from multi-Gaussian diffusion with water transport time, even with moderate anisotropy such as in kidneys. The use of spectral diffusion with a multi-Gaussian model and a fixed regularization parameter is particularly promising in organs such as the kidney with variable numbers of physiologic compartments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Categorization of 33 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. A Geometric Tension Dynamics Model of Epithelial Convergent Extension. Learning Molecular Representation in a Cell. Ankle Exoskeletons May Hinder Standing Balance in Simple Models of Older and Younger Adults. Nonparametric causal inference for optogenetics: sequential excursion effects for dynamic regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1