天然黄酮对牛乳腺炎病原体的抗菌活性:体外、SAR 分析和计算研究。

In silico pharmacology Pub Date : 2024-08-24 eCollection Date: 2024-01-01 DOI:10.1007/s40203-024-00253-w
Ahlam Haj Hasan, Gagan Preet, Rishi Vachaspathy Astakala, Hanan Al-Adilah, Emmanuel Tope Oluwabusola, Rainer Ebel, Marcel Jaspars
{"title":"天然黄酮对牛乳腺炎病原体的抗菌活性:体外、SAR 分析和计算研究。","authors":"Ahlam Haj Hasan, Gagan Preet, Rishi Vachaspathy Astakala, Hanan Al-Adilah, Emmanuel Tope Oluwabusola, Rainer Ebel, Marcel Jaspars","doi":"10.1007/s40203-024-00253-w","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (<b>1</b>) and 2-(3-hydroxyphenyl)chromen-4-one (<b>4</b>) showed inhibition of the growth of <i>Klebsiella oxytoca</i> with MIC values range (25-50 µg mL<sup>- 1</sup>) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against <i>Klebsiella oxytoca</i> while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (<b>4</b>) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (<b>4</b>) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (<b>1</b>) and (<b>4</b>) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00253-w.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study.\",\"authors\":\"Ahlam Haj Hasan, Gagan Preet, Rishi Vachaspathy Astakala, Hanan Al-Adilah, Emmanuel Tope Oluwabusola, Rainer Ebel, Marcel Jaspars\",\"doi\":\"10.1007/s40203-024-00253-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (<b>1</b>) and 2-(3-hydroxyphenyl)chromen-4-one (<b>4</b>) showed inhibition of the growth of <i>Klebsiella oxytoca</i> with MIC values range (25-50 µg mL<sup>- 1</sup>) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against <i>Klebsiella oxytoca</i> while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (<b>4</b>) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (<b>4</b>) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (<b>1</b>) and (<b>4</b>) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00253-w.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-024-00253-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00253-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

牛乳腺炎是一种影响奶牛的世界性疾病,给乳制品行业造成了重大经济损失。近来,微生物对现有抗生素产生了抗药性,这使得治疗方案变得更加复杂,因此必须加强抗生素管理,并进一步研究寻找新的活性化合物。最近,植物生物制剂作为一种抗生素管理干预措施,在家禽业中被用作抗生素的替代品,这引起了人们的兴趣。本研究评估了 16 种黄酮类化合物对牛乳腺炎病原体的体外抗菌活性。其中有两种黄酮类化合物2-(4- 甲氧基苯基)色烯-4-酮(1)和 2-(3-羟基苯基)色烯-4-酮(4)显示出对牛克雷伯氏菌生长的抑制作用,其 MIC 值范围为(25-50 µg mL- 1),随后进行的结构-活性关系(SAR)研究表明,C-3`处羟基或 C-4` 处甲氧基的存在会增加对牛克雷伯氏菌的活性,而 C-7 处羟基的存在则会降低活性。此外,研究人员还采用了一种基于结构的药物开发方法,利用几种硅学工具来了解活性黄酮在 DNA 回旋酶蛋白活性位点上的相互作用。化合物(4)的对接得分高于槲皮素(标准品),后者具有抑制 DNA 回旋酶的抗菌活性。此外,化合物(4)和槲皮素的药效结构显示出相似的药效特征以及与 DNA 回旋酶的相互作用。根据我们的研究结果,化合物(1)和(4)有望作为潜在的抗微生物植物化学物质得到进一步研究,从而在控制牛乳腺炎方面发挥作用,并进一步研究其作用机制:在线版本包含补充材料,可查阅 10.1007/s40203-024-00253-w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study.

Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (1) and 2-(3-hydroxyphenyl)chromen-4-one (4) showed inhibition of the growth of Klebsiella oxytoca with MIC values range (25-50 µg mL- 1) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against Klebsiella oxytoca while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (4) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (4) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (1) and (4) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00253-w.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies. Integrative multi-target analysis of Urtica dioica for gout arthritis treatment: a network pharmacology and clustering approach. Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway. In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1