发现视力模式,检测健康青少年足球运动员的认知能力变化。

IF 5.4 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of healthcare informatics research Pub Date : 2019-02-08 eCollection Date: 2019-12-01 DOI:10.1007/s41666-019-00045-4
Gaurav N Pradhan, Jamie M Bogle, Michael J Cevette, Jan Stepanek
{"title":"发现视力模式,检测健康青少年足球运动员的认知能力变化。","authors":"Gaurav N Pradhan, Jamie M Bogle, Michael J Cevette, Jan Stepanek","doi":"10.1007/s41666-019-00045-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we focus on the application of oculometric patterns extracted from raw eye movements during a mental workload task to assess changes in cognitive performance in healthy youth athletes over the course of a typical sport season. Oculometric features pertaining to fixations and saccades were measured on 116 athletes in pre- and post-season testing. Participants were between 7 and 14 years of age at pre-season testing. Due to varied developmental rates, there were large interindividual performance differences during a mental workload task consisting of reading numbers. Based on different reading speeds, we classified three profiles (slow, moderate, and fast) and established their corresponding baselines for oculometric data. Within each profile, we describe changes in oculomotor function based on changes in cognitive performance during the season. To visualize these changes in multidimensional oculometric data, we also present a multidimensional visualization tool named DiViTo (diagnostic visualization tool). These experimental, computational informatics and visualization methodologies may serve to utilize oculometric information to detect changes in cognitive performance due to mild or severe cognitive impairment such as concussion/mild traumatic brain injury, as well as possibly other disorders such as attention deficit hyperactivity disorders, learning/reading disabilities, impairment of alertness, and neurocognitive function.</p>","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering Oculometric Patterns to Detect Cognitive Performance Changes in Healthy Youth Football Athletes.\",\"authors\":\"Gaurav N Pradhan, Jamie M Bogle, Michael J Cevette, Jan Stepanek\",\"doi\":\"10.1007/s41666-019-00045-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we focus on the application of oculometric patterns extracted from raw eye movements during a mental workload task to assess changes in cognitive performance in healthy youth athletes over the course of a typical sport season. Oculometric features pertaining to fixations and saccades were measured on 116 athletes in pre- and post-season testing. Participants were between 7 and 14 years of age at pre-season testing. Due to varied developmental rates, there were large interindividual performance differences during a mental workload task consisting of reading numbers. Based on different reading speeds, we classified three profiles (slow, moderate, and fast) and established their corresponding baselines for oculometric data. Within each profile, we describe changes in oculomotor function based on changes in cognitive performance during the season. To visualize these changes in multidimensional oculometric data, we also present a multidimensional visualization tool named DiViTo (diagnostic visualization tool). These experimental, computational informatics and visualization methodologies may serve to utilize oculometric information to detect changes in cognitive performance due to mild or severe cognitive impairment such as concussion/mild traumatic brain injury, as well as possibly other disorders such as attention deficit hyperactivity disorders, learning/reading disabilities, impairment of alertness, and neurocognitive function.</p>\",\"PeriodicalId\":101413,\"journal\":{\"name\":\"Journal of healthcare informatics research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2019-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of healthcare informatics research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-019-00045-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of healthcare informatics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-019-00045-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究了在一项脑力劳动任务中从原始眼球运动中提取的眼球测量模式的应用,以评估健康青少年运动员在一个典型运动赛季中认知能力的变化。在赛季前和赛季后的测试中,对 116 名运动员的定点和眼球移动进行了眼球测量。参加季前测试的运动员年龄在 7 至 14 岁之间。由于发育速度不同,在完成阅读数字的脑力劳动任务时,个体间的表现差异很大。根据不同的阅读速度,我们将其分为三类(慢速、中速和快速),并建立了相应的视力数据基线。在每种情况下,我们都会根据季节中认知能力的变化来描述眼球运动功能的变化。为了将这些多维眼球测量数据的变化可视化,我们还推出了一个名为 DiViTo(诊断可视化工具)的多维可视化工具。这些实验、计算信息学和可视化方法可用于利用眼球测量信息检测轻度或严重认知障碍(如脑震荡/轻度脑外伤)以及其他可能的疾病(如注意力缺陷多动障碍、学习/阅读障碍、警觉性受损和神经认知功能障碍)导致的认知表现变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Oculometric Patterns to Detect Cognitive Performance Changes in Healthy Youth Football Athletes.

In this paper, we focus on the application of oculometric patterns extracted from raw eye movements during a mental workload task to assess changes in cognitive performance in healthy youth athletes over the course of a typical sport season. Oculometric features pertaining to fixations and saccades were measured on 116 athletes in pre- and post-season testing. Participants were between 7 and 14 years of age at pre-season testing. Due to varied developmental rates, there were large interindividual performance differences during a mental workload task consisting of reading numbers. Based on different reading speeds, we classified three profiles (slow, moderate, and fast) and established their corresponding baselines for oculometric data. Within each profile, we describe changes in oculomotor function based on changes in cognitive performance during the season. To visualize these changes in multidimensional oculometric data, we also present a multidimensional visualization tool named DiViTo (diagnostic visualization tool). These experimental, computational informatics and visualization methodologies may serve to utilize oculometric information to detect changes in cognitive performance due to mild or severe cognitive impairment such as concussion/mild traumatic brain injury, as well as possibly other disorders such as attention deficit hyperactivity disorders, learning/reading disabilities, impairment of alertness, and neurocognitive function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Siamese Neural Network for Speech-Based Depression Classification and Severity Assessment. Predicting Multiple Outcomes Associated with Frailty based on Imbalanced Multi-label Classification. LightDPH: Lightweight Dual-Projection-Head Hierarchical Contrastive Learning for Skin Lesion Classification. A Methodology to Measure Glucose Metabolism by Quantitative Analysis of PET Images. Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1