{"title":"用于固体氧化物燃料电池的构型熵无钴 Bi0.5Sr0.5FeO3-δ 阴极催化剂的先进电催化性能","authors":"Shichao Zhang, Qiang Li, Liping Sun, Hui Zhao","doi":"10.1016/j.elecom.2024.107795","DOIUrl":null,"url":null,"abstract":"<div><p>The medium-entropy perovskite oxide Bi<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.85</sub>Nb<sub>0.05</sub>Ta<sub>0.05</sub>Sb<sub>0.05</sub>O<sub>3–</sub><em><sub>δ</sub></em> (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO<sub>2</sub> tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm<sup>2</sup>. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm<sup>−2</sup>. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO<sub>2</sub> tolerance and durability in a CO<sub>2</sub>-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107795"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001383/pdfft?md5=aea0ca4e15480e99e282a5004080971a&pid=1-s2.0-S1388248124001383-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells\",\"authors\":\"Shichao Zhang, Qiang Li, Liping Sun, Hui Zhao\",\"doi\":\"10.1016/j.elecom.2024.107795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The medium-entropy perovskite oxide Bi<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.85</sub>Nb<sub>0.05</sub>Ta<sub>0.05</sub>Sb<sub>0.05</sub>O<sub>3–</sub><em><sub>δ</sub></em> (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO<sub>2</sub> tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm<sup>2</sup>. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm<sup>−2</sup>. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO<sub>2</sub> tolerance and durability in a CO<sub>2</sub>-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"167 \",\"pages\":\"Article 107795\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001383/pdfft?md5=aea0ca4e15480e99e282a5004080971a&pid=1-s2.0-S1388248124001383-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001383\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells
The medium-entropy perovskite oxide Bi0.5Sr0.5Fe0.85Nb0.05Ta0.05Sb0.05O3–δ (BSFNTS) is evaluated as a potential cathode catalyst for solid oxide fuel cells (SOFCs). The crystal structure, electrocatalytic activity, oxygen reduction kinetics, and CO2 tolerance are systematically investigated. At 700 °C, the BSFNTS cathode exhibits excellent electrochemical performance with a polarization resistance as low as 0.095 Ω cm2. The maximal power density of the fuel cell with the BSFNTS cathode is 900 mW cm−2. Furthermore, the rate control step for the oxygen reduction reaction (ORR) of the electrode is primarily identified as the adsorbed and diffusion process of the molecule oxygen. The BSFNTS electrode presents excellent CO2 tolerance and durability in a CO2-containing atmosphere, which is related to the high acidity of Bi, Nb, Ta, and Sb cations and the larger average bonding energy of BSFNTS. The preliminary results indicate that BSFNTS medium-entropy oxide is an attractive cathode electrocatalyst for SOFCs.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.