通过界面催化实现防火和多功能环氧树脂/层状双氢氧化物复合材料

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL Applied Clay Science Pub Date : 2024-08-25 DOI:10.1016/j.clay.2024.107545
Zhi Li , Guan-Bin Huang , Han Li , Lei Zhang , Zhiqi Liu , Jimena De La Vega , Raquel Sánchez Díaz , Qingwen Zeng , De-Yi Wang
{"title":"通过界面催化实现防火和多功能环氧树脂/层状双氢氧化物复合材料","authors":"Zhi Li ,&nbsp;Guan-Bin Huang ,&nbsp;Han Li ,&nbsp;Lei Zhang ,&nbsp;Zhiqi Liu ,&nbsp;Jimena De La Vega ,&nbsp;Raquel Sánchez Díaz ,&nbsp;Qingwen Zeng ,&nbsp;De-Yi Wang","doi":"10.1016/j.clay.2024.107545","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to impart epoxy with a phosphorous-free super-efficient fire safety and multifunctions via a facile interface-manipulation protocol, we innovatively proposed a proof of concept of a two-in-one catalytic function via covalently inducing an interfacial supramolecular assembly of Salen-Fe complex on organic layered double hydroxide (LDH-DBS). Various characterizations confirmed the target LDH-DBS@Salen-Fe with a surface-located uniform and ultrathin deposition of Salen-Fe complex, which was conducive to a better nanodispersion in epoxy matrix. An exceptionally low loading of 2 wt% LDH-DBS@Salen-Fe (<em>i.e.</em>, 0.6 % Salen-Fe) endowed epoxy with a UL-94 <em>V</em>-0 level and intensive fire protection with a suppressed peak heat release rate by 45.0 %. An insightful mechanism investigation demonstrated that the interface-located Salen-Fe rapidly catalyzed a charring reaction with an ultrafast formation of protective fire chars to resist an early-stage fire attack. Additionally, relative to EP/2LDH-DBS, a mere 0.6 % Salen-Fe increased the tensile, flexural and impact strength by 39.6 %, 31.5 % and 37.0 %, respectively based on the optimized interface compatibilization. Interestingly, an ultralow loading of Salen-Fe significantly contributed to a degradation recycling of epoxy under a mild condition with mass loss after 7 h treatment 392.8 % higher than its counterpart via catalytically promoting the generation of CHCOO∙ and HO∙ at the interface. In perspective, an interfacial supramolecular assembly of two-in-one catalysts exploits a novel route towards a phosphorous-free fire-safe and multifunctionally reinforced polymers.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107545"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire-safe and multifunctional epoxy/layered double hydroxide composites via an interfacial catalysis\",\"authors\":\"Zhi Li ,&nbsp;Guan-Bin Huang ,&nbsp;Han Li ,&nbsp;Lei Zhang ,&nbsp;Zhiqi Liu ,&nbsp;Jimena De La Vega ,&nbsp;Raquel Sánchez Díaz ,&nbsp;Qingwen Zeng ,&nbsp;De-Yi Wang\",\"doi\":\"10.1016/j.clay.2024.107545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming to impart epoxy with a phosphorous-free super-efficient fire safety and multifunctions via a facile interface-manipulation protocol, we innovatively proposed a proof of concept of a two-in-one catalytic function via covalently inducing an interfacial supramolecular assembly of Salen-Fe complex on organic layered double hydroxide (LDH-DBS). Various characterizations confirmed the target LDH-DBS@Salen-Fe with a surface-located uniform and ultrathin deposition of Salen-Fe complex, which was conducive to a better nanodispersion in epoxy matrix. An exceptionally low loading of 2 wt% LDH-DBS@Salen-Fe (<em>i.e.</em>, 0.6 % Salen-Fe) endowed epoxy with a UL-94 <em>V</em>-0 level and intensive fire protection with a suppressed peak heat release rate by 45.0 %. An insightful mechanism investigation demonstrated that the interface-located Salen-Fe rapidly catalyzed a charring reaction with an ultrafast formation of protective fire chars to resist an early-stage fire attack. Additionally, relative to EP/2LDH-DBS, a mere 0.6 % Salen-Fe increased the tensile, flexural and impact strength by 39.6 %, 31.5 % and 37.0 %, respectively based on the optimized interface compatibilization. Interestingly, an ultralow loading of Salen-Fe significantly contributed to a degradation recycling of epoxy under a mild condition with mass loss after 7 h treatment 392.8 % higher than its counterpart via catalytically promoting the generation of CHCOO∙ and HO∙ at the interface. In perspective, an interfacial supramolecular assembly of two-in-one catalysts exploits a novel route towards a phosphorous-free fire-safe and multifunctionally reinforced polymers.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"260 \",\"pages\":\"Article 107545\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016913172400293X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172400293X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了通过简便的界面操作方案赋予环氧树脂无磷的超高效防火安全性和多功能性,我们创新性地提出了在有机层状双氢氧化物(LDH-DBS)上共价诱导Salen-Fe复合物的界面超分子组装,从而实现二合一催化功能的概念验证。各种表征证实,目标 LDH-DBS@Salen-Fe 上的 Salen-Fe 复合物表面定位均匀且超薄沉积,有利于在环氧基质中实现更好的纳米分散。2 wt% LDH-DBS@Salen-Fe(即 0.6 % Salen-Fe)的超低添加量使环氧树脂达到了 UL-94 V-0 级别,并具有较强的防火性能,峰值热释放率降低了 45.0%。一项深入的机理研究表明,位于界面上的 Salen-Fe 能迅速催化炭化反应,超快形成保护性防火炭,从而抵御早期火灾的侵袭。此外,与 EP/2LDH-DBS 相比,在优化界面相容的基础上,仅 0.6% 的 Salen-Fe 就能使拉伸强度、抗弯强度和冲击强度分别提高 39.6%、31.5% 和 37.0%。有趣的是,通过催化促进界面上 CHCOO∙ 和 HO∙ 的生成,超低负载的 Salen-Fe 显著促进了环氧树脂在温和条件下的降解回收,7 小时处理后的质量损失比其对应物高出 392.8%。总之,二合一催化剂的界面超分子组装为无磷防火安全多功能增强聚合物提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fire-safe and multifunctional epoxy/layered double hydroxide composites via an interfacial catalysis

Aiming to impart epoxy with a phosphorous-free super-efficient fire safety and multifunctions via a facile interface-manipulation protocol, we innovatively proposed a proof of concept of a two-in-one catalytic function via covalently inducing an interfacial supramolecular assembly of Salen-Fe complex on organic layered double hydroxide (LDH-DBS). Various characterizations confirmed the target LDH-DBS@Salen-Fe with a surface-located uniform and ultrathin deposition of Salen-Fe complex, which was conducive to a better nanodispersion in epoxy matrix. An exceptionally low loading of 2 wt% LDH-DBS@Salen-Fe (i.e., 0.6 % Salen-Fe) endowed epoxy with a UL-94 V-0 level and intensive fire protection with a suppressed peak heat release rate by 45.0 %. An insightful mechanism investigation demonstrated that the interface-located Salen-Fe rapidly catalyzed a charring reaction with an ultrafast formation of protective fire chars to resist an early-stage fire attack. Additionally, relative to EP/2LDH-DBS, a mere 0.6 % Salen-Fe increased the tensile, flexural and impact strength by 39.6 %, 31.5 % and 37.0 %, respectively based on the optimized interface compatibilization. Interestingly, an ultralow loading of Salen-Fe significantly contributed to a degradation recycling of epoxy under a mild condition with mass loss after 7 h treatment 392.8 % higher than its counterpart via catalytically promoting the generation of CHCOO∙ and HO∙ at the interface. In perspective, an interfacial supramolecular assembly of two-in-one catalysts exploits a novel route towards a phosphorous-free fire-safe and multifunctionally reinforced polymers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
期刊最新文献
Mechanism of surfactant effect on bacterial adsorption during bioleaching of lepidolite Clay mineralogical and geochemical responses to weathering of intrusive vs. extrusive rocks under a subtropical climate Probing subtle alterations of smectite layer charge by the spectroscopic OD method in bentonite from the Alternative Buffer Materials tests in Äspö, Sweden Adsorption and oxidation of β-carotene by montmorillonite bleaching clays The influence of depositional conditions on chemical and mineralogical composition of glauconite: Case study from the Late Cretaceous Dokan Basin in Kurdistan region of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1