微观奇迹:解码微肽在先天性免疫中的作用。

IF 4.9 3区 医学 Q2 IMMUNOLOGY Immunology Pub Date : 2024-08-26 DOI:10.1111/imm.13850
Praveena Naidu, Mandë Holford
{"title":"微观奇迹:解码微肽在先天性免疫中的作用。","authors":"Praveena Naidu,&nbsp;Mandë Holford","doi":"10.1111/imm.13850","DOIUrl":null,"url":null,"abstract":"<p>The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of &lt;100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"173 4","pages":"605-621"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13850","citationCount":"0","resultStr":"{\"title\":\"Microscopic marvels: Decoding the role of micropeptides in innate immunity\",\"authors\":\"Praveena Naidu,&nbsp;Mandë Holford\",\"doi\":\"10.1111/imm.13850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of &lt;100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\"173 4\",\"pages\":\"605-621\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13850\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imm.13850\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13850","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

先天免疫反应受到不断变化的环境和病原体的选择压力。虽然可以通过比较物种内部和物种之间的氨基酸突变率来研究序列进化,但人们对基因的诞生和死亡如何促进免疫进化却知之甚少。短开放阅读框曾经被视为非翻译或转录噪音,但它通常可以产生具有以下特征的微肽
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscopic marvels: Decoding the role of micropeptides in innate immunity

The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of <100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunology
Immunology 医学-免疫学
CiteScore
11.90
自引率
1.60%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers. Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology. The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.
期刊最新文献
IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. LGR4 Deficiency Aggravates Skin Inflammation and Epidermal Hyperplasia in Imiquimod-Induced Psoriasis. Featured Cover SNX17 Regulates Antigen Internalisation and Phagosomal Maturation by Dendritic Cells. Metabolic Regulation of Inflammation: Exploring the Potential Benefits of Itaconate in Autoimmune Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1