对不同祖先的精细图谱绘制推动了人类复杂性状和疾病的潜在因果变异的发现。

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2024-08-26 DOI:10.1038/s41588-024-01870-z
Kai Yuan, Ryan J. Longchamps, Antonio F. Pardiñas, Mingrui Yu, Tzu-Ting Chen, Shu-Chin Lin, Yu Chen, Max Lam, Ruize Liu, Yan Xia, Zhenglin Guo, Wenzhao Shi, Chengguo Shen, The Schizophrenia Workgroup of Psychiatric Genomics Consortium, Mark J. Daly, Benjamin M. Neale, Yen-Chen A. Feng, Yen-Feng Lin, Chia-Yen Chen, Michael C. O’Donovan, Tian Ge, Hailiang Huang
{"title":"对不同祖先的精细图谱绘制推动了人类复杂性状和疾病的潜在因果变异的发现。","authors":"Kai Yuan, Ryan J. Longchamps, Antonio F. Pardiñas, Mingrui Yu, Tzu-Ting Chen, Shu-Chin Lin, Yu Chen, Max Lam, Ruize Liu, Yan Xia, Zhenglin Guo, Wenzhao Shi, Chengguo Shen, The Schizophrenia Workgroup of Psychiatric Genomics Consortium, Mark J. Daly, Benjamin M. Neale, Yen-Chen A. Feng, Yen-Feng Lin, Chia-Yen Chen, Michael C. O’Donovan, Tian Ge, Hailiang Huang","doi":"10.1038/s41588-024-01870-z","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestry has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping. SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and linkage disequilibrium patterns, accounts for multiple causal variants in a genomic region and can be applied to GWAS summary statistics. We comprehensively assessed the performance of SuSiEx using simulations. We further showed that SuSiEx improves the fine-mapping of a range of quantitative traits available in both the UK Biobank and Taiwan Biobank, and improves the fine-mapping of schizophrenia-associated loci by integrating GWAS across East Asian and European ancestries. The cross-population Sum of Single Effects (SuSiEx) model is a robust and computationally efficient method for conducting multi-ancestry fine-mapping of genome-wide association signals, producing smaller credible sets and capturing population-specific causal variants.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":null,"pages":null},"PeriodicalIF":31.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases\",\"authors\":\"Kai Yuan, Ryan J. Longchamps, Antonio F. Pardiñas, Mingrui Yu, Tzu-Ting Chen, Shu-Chin Lin, Yu Chen, Max Lam, Ruize Liu, Yan Xia, Zhenglin Guo, Wenzhao Shi, Chengguo Shen, The Schizophrenia Workgroup of Psychiatric Genomics Consortium, Mark J. Daly, Benjamin M. Neale, Yen-Chen A. Feng, Yen-Feng Lin, Chia-Yen Chen, Michael C. O’Donovan, Tian Ge, Hailiang Huang\",\"doi\":\"10.1038/s41588-024-01870-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestry has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping. SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and linkage disequilibrium patterns, accounts for multiple causal variants in a genomic region and can be applied to GWAS summary statistics. We comprehensively assessed the performance of SuSiEx using simulations. We further showed that SuSiEx improves the fine-mapping of a range of quantitative traits available in both the UK Biobank and Taiwan Biobank, and improves the fine-mapping of schizophrenia-associated loci by integrating GWAS across East Asian and European ancestries. The cross-population Sum of Single Effects (SuSiEx) model is a robust and computationally efficient method for conducting multi-ancestry fine-mapping of genome-wide association signals, producing smaller credible sets and capturing population-specific causal variants.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01870-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01870-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

对人类复杂性状或疾病进行的全基因组关联研究(GWAS)往往涉及到数百或数千个基因变异的遗传位点,其中许多变异具有相似的统计意义。虽然欧洲血统个体的统计精细图谱已经取得了重要发现,但跨人群精细图谱有可能通过利用不同血统的基因组多样性来提高研究效率和分辨率。在这里,我们介绍一种精确且计算效率高的跨人群精细图谱绘制方法--SuSiEx。SuSiEx 整合了来自任意数量祖先的数据,明确地模拟了特定人群的等位基因频率和连锁不平衡模式,考虑了基因组区域中的多个因果变异,并可应用于 GWAS 的汇总统计。我们通过模拟全面评估了 SuSiEx 的性能。我们进一步表明,SuSiEx 改善了英国生物库和台湾生物库中一系列数量性状的精细图谱,并通过整合东亚和欧洲血统的 GWAS 改善了精神分裂症相关位点的精细图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestry has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping. SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and linkage disequilibrium patterns, accounts for multiple causal variants in a genomic region and can be applied to GWAS summary statistics. We comprehensively assessed the performance of SuSiEx using simulations. We further showed that SuSiEx improves the fine-mapping of a range of quantitative traits available in both the UK Biobank and Taiwan Biobank, and improves the fine-mapping of schizophrenia-associated loci by integrating GWAS across East Asian and European ancestries. The cross-population Sum of Single Effects (SuSiEx) model is a robust and computationally efficient method for conducting multi-ancestry fine-mapping of genome-wide association signals, producing smaller credible sets and capturing population-specific causal variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
Toward advances in retinoblastoma genetics in Kenya Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer’s disease Genetics and dietary restriction impact lifespan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1