远缘植物反复适应当地气候的遗传结构。

IF 13.9 1区 生物学 Q1 ECOLOGY Nature ecology & evolution Pub Date : 2024-08-26 DOI:10.1038/s41559-024-02514-5
James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman
{"title":"远缘植物反复适应当地气候的遗传结构。","authors":"James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman","doi":"10.1038/s41559-024-02514-5","DOIUrl":null,"url":null,"abstract":"Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1933-1947"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41559-024-02514-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The genetic architecture of repeated local adaptation to climate in distantly related plants\",\"authors\":\"James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman\",\"doi\":\"10.1038/s41559-024-02514-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"8 10\",\"pages\":\"1933-1947\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41559-024-02514-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41559-024-02514-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02514-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近亲物种经常使用相同的基因来适应相似的环境。然而,我们对这些基因为何具有更强的适应潜力以及这种潜力是否在更深的进化世系中得以保留知之甚少。对气候的适应是检验这些观点的天然实验室,因为即使是远缘物种也必须面对类似的压力。在这里,我们重新分析了来自 25 个植物物种的数千个个体的基因组数据,这些物种与落羽松和拟南芥(约 300 Myr)存在差异。我们根据基因中等位基因频率与 21 个气候变量变异之间的种内关联来检验遗传可重复性。我们的研究结果表明,在随机性条件下,遗传可重复性在整个深部时间内具有显著的统计学意义,并确定了一套 108 个基因家族(正交群)和基因功能,这些基因家族和基因功能反复驱动着当地对气候的适应。这组基因包括许多在非生物应激反应中具有众所周知功能的正交组。利用基因共表达网络来量化多效性,我们发现重复性证据更强的正交组表现出更高的网络中心性和更广泛的跨组织表达(更高的多效性),这与 "复杂性成本 "理论相反。这些基因家族在帮助野生物种和作物物种应对未来气候变化方面可能很重要,是未来研究的重要候选对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The genetic architecture of repeated local adaptation to climate in distantly related plants
Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature ecology & evolution
Nature ecology & evolution Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍: Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.
期刊最新文献
Inferring DNA methylation in non-skeletal tissues of ancient specimens Species diversity links land consolidation to rodent disease Anthropogenic land consolidation intensifies zoonotic host diversity loss and disease transmission in human habitats Limits to the ability of carbon farming projects to deliver benefits for threatened species How genotype-by-environment interactions on fitness emerge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1