James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman
{"title":"远缘植物反复适应当地气候的遗传结构。","authors":"James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman","doi":"10.1038/s41559-024-02514-5","DOIUrl":null,"url":null,"abstract":"Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1933-1947"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41559-024-02514-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The genetic architecture of repeated local adaptation to climate in distantly related plants\",\"authors\":\"James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman\",\"doi\":\"10.1038/s41559-024-02514-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"8 10\",\"pages\":\"1933-1947\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41559-024-02514-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41559-024-02514-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02514-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
The genetic architecture of repeated local adaptation to climate in distantly related plants
Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.