镜像神经元系统和心智系统在单个大脑中的协同作用,以及在联合行动中大脑之间的协同作用。

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-08-24 DOI:10.1016/j.neuroimage.2024.120783
{"title":"镜像神经元系统和心智系统在单个大脑中的协同作用,以及在联合行动中大脑之间的协同作用。","authors":"","doi":"10.1016/j.neuroimage.2024.120783","DOIUrl":null,"url":null,"abstract":"<div><p>Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems—MENT and MNS—during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels.</p><p>In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924002805/pdfft?md5=9ef4e04f00025f676f774a679def42af&pid=1-s2.0-S1053811924002805-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions\",\"authors\":\"\",\"doi\":\"10.1016/j.neuroimage.2024.120783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems—MENT and MNS—during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels.</p><p>In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.</p></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053811924002805/pdfft?md5=9ef4e04f00025f676f774a679def42af&pid=1-s2.0-S1053811924002805-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924002805\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924002805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

合作行动涉及两个或两个以上的人对行动的模拟和共同表述。这需要两个复杂的大脑系统的参与:镜像神经元系统(MNS)和心智化系统(MENT)。然而,这两个系统的内部组织结构以及在联合行动(JA)过程中的潜在协同作用仍有待确定。本研究旨在探讨这两个基本系统--意念系统(MENT)和思维系统(MNS)--在持续互动过程中的作用和相互作用。为此,我们利用高密度脑电图双重记录,对运动合作任务中的源域进行了多脑连接分析,从而对 MNS 和 MENT 在脑内和脑间的作用有了相关的了解。特别是,脑内分析表明了这两个系统在 JA 过程中的基本功能,以及这两种神经机制在合作活动中的单个脑区所发挥的关键作用。具体来说,我们的脑内分析表明,在联合行动(JA)过程中,这两种神经机制都是必不可少的,表明了 MNS 和 MENT 之间的牢固联系,以及这两种机制的单个脑区在合作行动中的核心作用。此外,我们的脑间研究显示,涉及运动系统、MENT 和 MNS 的受试者间联系增加了。因此,我们的研究结果表明,在 MNS 和 MENT 系统同步的基础上,两个相互作用的主体之间存在着相互影响。我们的研究结果实际上鼓励了更多关于脑间动力学的研究,并有助于扩展社会神经科学的知识体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions

Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems—MENT and MNS—during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels.

In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke Semi-analytic three-shell forward calculation for magnetoencephalography Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study Distinct neural pathway and its information flow for blind individual's Braille reading Source imaging method based on diagonal covariance bases and its applications to OPM-MEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1