在重建的人体表皮中探测皮肤光过敏原:EPR 自旋捕获研究

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemistry and Photobiology Pub Date : 2024-08-27 DOI:10.1111/php.14010
Yannick Port-Lougarre, Guillaume Voegeli, Bertrand Vileno, Elena Giménez-Arnau
{"title":"在重建的人体表皮中探测皮肤光过敏原:EPR 自旋捕获研究","authors":"Yannick Port-Lougarre, Guillaume Voegeli, Bertrand Vileno, Elena Giménez-Arnau","doi":"10.1111/php.14010","DOIUrl":null,"url":null,"abstract":"<p><p>Photoallergic contact dermatitis is a skin disease caused by combined exposure to photoreactive chemicals and sunlight. Exposure to allergens and the risk of skin sensitization is an essential regulatory issue within the industry. Yet, only few non-validated assays for photoallergy assessment exist as the pathogenesis is not fully deciphered. Improving such assays and/or developing new ones require an understanding of the chemical mechanisms involved. The first key event in the photosensitization process, namely chemical binding of the photoallergen to endogenous proteins, is thought to proceed via photo-mediated radicals arising from the photoallergen. Moreover, the mechanism of action of these radicals if formed in the epidermis is not known and far from being unraveled. We present here an original proof-of-concept methodology to probe radical generation from allergens in contact with photoexposed skin, using electron paramagnetic resonance and spin trapping in a reconstructed human epidermis model mimicking real-life exposure scenarios.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing skin photoallergens in reconstructed human epidermis: An EPR spin trapping investigation.\",\"authors\":\"Yannick Port-Lougarre, Guillaume Voegeli, Bertrand Vileno, Elena Giménez-Arnau\",\"doi\":\"10.1111/php.14010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photoallergic contact dermatitis is a skin disease caused by combined exposure to photoreactive chemicals and sunlight. Exposure to allergens and the risk of skin sensitization is an essential regulatory issue within the industry. Yet, only few non-validated assays for photoallergy assessment exist as the pathogenesis is not fully deciphered. Improving such assays and/or developing new ones require an understanding of the chemical mechanisms involved. The first key event in the photosensitization process, namely chemical binding of the photoallergen to endogenous proteins, is thought to proceed via photo-mediated radicals arising from the photoallergen. Moreover, the mechanism of action of these radicals if formed in the epidermis is not known and far from being unraveled. We present here an original proof-of-concept methodology to probe radical generation from allergens in contact with photoexposed skin, using electron paramagnetic resonance and spin trapping in a reconstructed human epidermis model mimicking real-life exposure scenarios.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

光过敏性接触性皮炎是一种因接触光活性化学品和阳光而引起的皮肤病。接触过敏原和皮肤过敏风险是行业内一个重要的监管问题。然而,由于发病机理尚未完全破解,目前仅有少数未经验证的光过敏评估测定方法。要改进这些检测方法和/或开发新的检测方法,就必须了解其中涉及的化学机制。光敏过程中的第一个关键事件,即光过敏原与内源性蛋白质的化学结合,被认为是通过光过敏原产生的光自由基进行的。此外,如果这些自由基在表皮中形成,其作用机制尚不清楚,也远未解开。我们在此介绍一种新颖的概念验证方法,利用电子顺磁共振和自旋捕获技术,在模拟真实暴露场景的重建人体表皮模型中,探究过敏原与暴露皮肤接触后产生的自由基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing skin photoallergens in reconstructed human epidermis: An EPR spin trapping investigation.

Photoallergic contact dermatitis is a skin disease caused by combined exposure to photoreactive chemicals and sunlight. Exposure to allergens and the risk of skin sensitization is an essential regulatory issue within the industry. Yet, only few non-validated assays for photoallergy assessment exist as the pathogenesis is not fully deciphered. Improving such assays and/or developing new ones require an understanding of the chemical mechanisms involved. The first key event in the photosensitization process, namely chemical binding of the photoallergen to endogenous proteins, is thought to proceed via photo-mediated radicals arising from the photoallergen. Moreover, the mechanism of action of these radicals if formed in the epidermis is not known and far from being unraveled. We present here an original proof-of-concept methodology to probe radical generation from allergens in contact with photoexposed skin, using electron paramagnetic resonance and spin trapping in a reconstructed human epidermis model mimicking real-life exposure scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photochemistry and Photobiology
Photochemistry and Photobiology 生物-生化与分子生物学
CiteScore
6.70
自引率
12.10%
发文量
171
审稿时长
2.7 months
期刊介绍: Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.
期刊最新文献
Performance of chatbots in queries concerning fundamental concepts in photochemistry. Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation. Extending the acute skin response spectrum to include the far-UVC. Inhibition sensitivity of in vitro firefly bioluminescence quantum yields to Zn2+ and Cd2+ concentrations in aqueous solutions. Ultraviolet radiation inhibits mitochondrial bioenergetics activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1