螺旋 B 表面多肽对嘌呤霉素氨基核苷肾病大鼠肾脏的保护作用

IF 3 3区 医学 Q1 UROLOGY & NEPHROLOGY Renal Failure Pub Date : 2024-12-01 Epub Date: 2024-08-27 DOI:10.1080/0886022X.2024.2394637
Ting Chen, Xiao-Ye Shen, Hui-Min Liang, Hui Shi, Li Yuan
{"title":"螺旋 B 表面多肽对嘌呤霉素氨基核苷肾病大鼠肾脏的保护作用","authors":"Ting Chen, Xiao-Ye Shen, Hui-Min Liang, Hui Shi, Li Yuan","doi":"10.1080/0886022X.2024.2394637","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-β (TGF-β) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes <i>in vitro</i>. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF.</p><p><strong>Methods: </strong>Rats nephropathy model was induced by injection of 60 mg/kg of PAN <i>via</i> the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF.</p><p><strong>Results: </strong>Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (<i>p</i> < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (<i>p</i> < 0.05).</p><p><strong>Conclusions: </strong>The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Renal protective effects of helix B surface polypeptide in rats with puromycin aminonucleoside nephropathy.\",\"authors\":\"Ting Chen, Xiao-Ye Shen, Hui-Min Liang, Hui Shi, Li Yuan\",\"doi\":\"10.1080/0886022X.2024.2394637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-β (TGF-β) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes <i>in vitro</i>. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF.</p><p><strong>Methods: </strong>Rats nephropathy model was induced by injection of 60 mg/kg of PAN <i>via</i> the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF.</p><p><strong>Results: </strong>Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (<i>p</i> < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (<i>p</i> < 0.05).</p><p><strong>Conclusions: </strong>The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.</p>\",\"PeriodicalId\":20839,\"journal\":{\"name\":\"Renal Failure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renal Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/0886022X.2024.2394637\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2024.2394637","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:最近的研究报道,在肾缺血再灌注(IR)损伤模型中,红细胞生成素衍生物螺旋B表面多肽(HBSP)表现出强大的组织保护作用,与红细胞生成素作用无关。同时,转化生长因子-β(TGF-β)超家族成员胶质细胞系源性神经营养因子(GDNF)在体外对荚膜细胞有保护作用。本研究利用大鼠嘌呤霉素氨基核苷肾病(PAN)模型,观察 HBSP 的肾脏保护作用,并研究其对荚膜细胞的肾脏保护作用及其与 GDNF 的相关机制:方法:通过尾静脉注射 60 mg/kg PAN 诱导大鼠肾病模型。PAN + HBSP 组大鼠在模型诱导前 4 小时腹腔注射 HBSP(8 nmol/kg),然后每 24 小时腹腔注射一次 HBSP,连续注射 7 天。每隔一天测定一次 24 小时尿蛋白水平,并在第 7 天采集血液和肾组织样本,以检查肾功能、全血细胞计数、肾脏病理变化和 GDNF 的表达水平:结果:与对照组相比,PAN 肾病大鼠模型出现大量尿蛋白。结果:与对照组相比,PAN 肾病模型大鼠出现大量尿蛋白,病理表现主要是足突广泛融合和消失,荚膜细胞空泡变性并与肾小球基底膜分离。GDNF 表达上调。与 PAN + 车辆组相比,PAN + HBSP 组尿蛋白减少(p p 结论):PAN 大鼠模型肾脏中 GDNF 的表达增加。HBSP 降低了 PAN 大鼠模型的尿蛋白,改善了肾脏荚膜细胞的病理变化,增加了 GDNF 的表达。HBSP 可能通过上调 GDNF 的表达对荚膜细胞产生保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Renal protective effects of helix B surface polypeptide in rats with puromycin aminonucleoside nephropathy.

Background: Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-β (TGF-β) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes in vitro. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF.

Methods: Rats nephropathy model was induced by injection of 60 mg/kg of PAN via the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF.

Results: Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (p < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (p < 0.05).

Conclusions: The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renal Failure
Renal Failure 医学-泌尿学与肾脏学
CiteScore
3.90
自引率
13.30%
发文量
374
审稿时长
1 months
期刊介绍: Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.
期刊最新文献
The use of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for diagnosis of hepato-renal syndrome in advanced cirrhotic patients. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. A Mendelian randomization study: physical activities and chronic kidney disease. Association between normal saline infusion volume in the emergency department and acute kidney injury in heat stroke patients: a multicenter retrospective study. Association of frequent intradialytic hypotension with the clinical outcomes of patients on hemodialysis: a prospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1