使用流数据的高维广义线性模型在线推理。

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2023-01-01 Epub Date: 2023-11-28 DOI:10.1214/23-ejs2182
Lan Luo, Ruijian Han, Yuanyuan Lin, Jian Huang
{"title":"使用流数据的高维广义线性模型在线推理。","authors":"Lan Luo, Ruijian Han, Yuanyuan Lin, Jian Huang","doi":"10.1214/23-ejs2182","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for realtime estimation and inference. We propose an online debiased lasso method that aligns with the data collection scheme of streaming data. Online debiased lasso differs from offline debiased lasso in two important aspects. First, it updates component-wise confidence intervals of regression coefficients with only summary statistics of the historical data. Second, online debiased lasso adds an additional term to correct approximation errors accumulated throughout the online updating procedure. We show that our proposed online debiased estimators in generalized linear models are asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of our proposed online debiased lasso method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. Furthermore, we illustrate the application of our method with a high-dimensional text dataset.</p>","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346802/pdf/","citationCount":"0","resultStr":"{\"title\":\"Online inference in high-dimensional generalized linear models with streaming data.\",\"authors\":\"Lan Luo, Ruijian Han, Yuanyuan Lin, Jian Huang\",\"doi\":\"10.1214/23-ejs2182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for realtime estimation and inference. We propose an online debiased lasso method that aligns with the data collection scheme of streaming data. Online debiased lasso differs from offline debiased lasso in two important aspects. First, it updates component-wise confidence intervals of regression coefficients with only summary statistics of the historical data. Second, online debiased lasso adds an additional term to correct approximation errors accumulated throughout the online updating procedure. We show that our proposed online debiased estimators in generalized linear models are asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of our proposed online debiased lasso method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. Furthermore, we illustrate the application of our method with a high-dimensional text dataset.</p>\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们针对高维广义线性模型开发了一种流数据在线统计推断方法,用于实时估计和推断。我们提出了一种与流数据的数据收集方案相匹配的在线debiased lasso方法。在线去偏拉索与离线去偏拉索在两个重要方面有所不同。首先,它只使用历史数据的摘要统计来更新回归系数的分量置信区间。其次,在线去偏 lasso 增加了一个项,以纠正在线更新过程中积累的近似误差。我们证明,在广义线性模型中,我们提出的在线去偏估计器是渐近正态的。这一结果为利用流数据进行实时临时统计推断提供了理论基础。为了评估我们提出的在线去偏拉索方法的性能,我们进行了大量的数值实验。这些实验证明了我们算法的有效性,并支持理论结果。此外,我们还用一个高维文本数据集说明了我们的方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online inference in high-dimensional generalized linear models with streaming data.

In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for realtime estimation and inference. We propose an online debiased lasso method that aligns with the data collection scheme of streaming data. Online debiased lasso differs from offline debiased lasso in two important aspects. First, it updates component-wise confidence intervals of regression coefficients with only summary statistics of the historical data. Second, online debiased lasso adds an additional term to correct approximation errors accumulated throughout the online updating procedure. We show that our proposed online debiased estimators in generalized linear models are asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of our proposed online debiased lasso method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. Furthermore, we illustrate the application of our method with a high-dimensional text dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Dimension-free bounds for sums of dependent matrices and operators with heavy-tailed distributions A tradeoff between false discovery and true positive proportions for sparse high-dimensional logistic regression A penalised bootstrap estimation procedure for the explained Gini coefficient Random permutations generated by delay models and estimation of delay distributions Regression analysis of partially linear transformed mean residual life models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1