Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon
{"title":"基于 NLP 的人体工程学 MSD 风险根源分析和风险控制建议。","authors":"Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon","doi":"10.1080/00140139.2024.2394510","DOIUrl":null,"url":null,"abstract":"<p><p>An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8\" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NLP-based ergonomics MSD risk root cause analysis and risk controls recommendation.\",\"authors\":\"Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon\",\"doi\":\"10.1080/00140139.2024.2394510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8\\\" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2394510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2394510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
NLP-based ergonomics MSD risk root cause analysis and risk controls recommendation.
An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.