{"title":"简短通讯:欧洲比目鱼(Platichthys flesus)皮肤合成褪黑激素的替代途径。","authors":"Magdalena Gozdowska , Joanna Stoń-Egiert , Ewa Kulczykowska","doi":"10.1016/j.cbpa.2024.111731","DOIUrl":null,"url":null,"abstract":"<div><p>The classic melatonin biosynthesis pathway (Mel; <em>N</em>-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to <em>N</em>-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of <em>N</em>-acetyltransferases (AANAT, SNAT, or NAT) and the second is <em>N</em>-acetylserotonin <em>O</em>-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of <em>N</em>-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"297 ","pages":"Article 111731"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324001582/pdfft?md5=de7ed18ba362c8eb57e3503b0409ae25&pid=1-s2.0-S1095643324001582-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Short communication: An alternative pathway for melatonin synthesis in the skin of European flounder (Platichthys flesus)\",\"authors\":\"Magdalena Gozdowska , Joanna Stoń-Egiert , Ewa Kulczykowska\",\"doi\":\"10.1016/j.cbpa.2024.111731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classic melatonin biosynthesis pathway (Mel; <em>N</em>-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to <em>N</em>-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of <em>N</em>-acetyltransferases (AANAT, SNAT, or NAT) and the second is <em>N</em>-acetylserotonin <em>O</em>-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of <em>N</em>-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.</p></div>\",\"PeriodicalId\":55237,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"volume\":\"297 \",\"pages\":\"Article 111731\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001582/pdfft?md5=de7ed18ba362c8eb57e3503b0409ae25&pid=1-s2.0-S1095643324001582-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001582\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001582","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Short communication: An alternative pathway for melatonin synthesis in the skin of European flounder (Platichthys flesus)
The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.