输入数据缺失网络的频域扩散适应

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-08-16 DOI:10.1016/j.sigpro.2024.109661
Yishu Peng, Sheng Zhang, Zhengchun Zhou
{"title":"输入数据缺失网络的频域扩散适应","authors":"Yishu Peng,&nbsp;Sheng Zhang,&nbsp;Zhengchun Zhou","doi":"10.1016/j.sigpro.2024.109661","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, a modified adapt-then-combine diffusion (mATC) strategy has been developed to handle distributed estimation problem with missing regressions (inputs). However, the mATC algorithm only considers the white input scenario and suffers from high complexity for long model filter lengths. To overcome these shortcomings, this paper proposes novel regularization-based frequency-domain diffusion algorithms for networks with missing input data. First, bias-eliminating cost function based on regularization is established by using the frequency-domain diagonal approximation. Then, with stochastic gradient descent, periodic update, and power normalization schemes, we design the regularization-based frequency-domain least mean square (R-FDLMS) algorithm as well as its normalized variant (R-FDNLMS). The latter converges faster than the former under colored inputs. The stability and steady-state behavior of the R-FDNLMS algorithm are also analyzed. Moreover, two effective power estimation methods are presented for both situations without and with the power ratio between the input signal and perturbation noise, along with a reset mechanism in the first case to enhance tracking performance. Finally, simulations are conducted to illustrate the superiority of the proposed algorithms and the validity of theoretical findings.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"226 ","pages":"Article 109661"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165168424002810/pdfft?md5=819e05c995a34784b076da4a06244d82&pid=1-s2.0-S0165168424002810-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Frequency-domain diffusion adaptation over networks with missing input data\",\"authors\":\"Yishu Peng,&nbsp;Sheng Zhang,&nbsp;Zhengchun Zhou\",\"doi\":\"10.1016/j.sigpro.2024.109661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, a modified adapt-then-combine diffusion (mATC) strategy has been developed to handle distributed estimation problem with missing regressions (inputs). However, the mATC algorithm only considers the white input scenario and suffers from high complexity for long model filter lengths. To overcome these shortcomings, this paper proposes novel regularization-based frequency-domain diffusion algorithms for networks with missing input data. First, bias-eliminating cost function based on regularization is established by using the frequency-domain diagonal approximation. Then, with stochastic gradient descent, periodic update, and power normalization schemes, we design the regularization-based frequency-domain least mean square (R-FDLMS) algorithm as well as its normalized variant (R-FDNLMS). The latter converges faster than the former under colored inputs. The stability and steady-state behavior of the R-FDNLMS algorithm are also analyzed. Moreover, two effective power estimation methods are presented for both situations without and with the power ratio between the input signal and perturbation noise, along with a reset mechanism in the first case to enhance tracking performance. Finally, simulations are conducted to illustrate the superiority of the proposed algorithms and the validity of theoretical findings.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"226 \",\"pages\":\"Article 109661\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002810/pdfft?md5=819e05c995a34784b076da4a06244d82&pid=1-s2.0-S0165168424002810-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002810\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424002810","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们开发了一种改进的 "先适应后组合 "扩散(mATC)策略,用于处理回归(输入)缺失的分布式估计问题。然而,mATC 算法只考虑了白色输入情况,而且在模型滤波器长度较长的情况下复杂度较高。为了克服这些缺点,本文针对输入数据缺失的网络提出了新颖的基于正则化的频域扩散算法。首先,利用频域对角线近似建立了基于正则化的消除偏差成本函数。然后,利用随机梯度下降、周期性更新和幂归一化方案,我们设计了基于正则化的频域最小均方算法(R-FDLMS)及其归一化变体(R-FDNLMS)。在彩色输入条件下,后者比前者收敛得更快。此外,还分析了 R-FDNLMS 算法的稳定性和稳态行为。此外,还介绍了两种有效的功率估计方法,分别适用于无输入信号和扰动噪声之间功率比的情况和有输入信号和扰动噪声之间功率比的情况,以及第一种情况下的重置机制,以提高跟踪性能。最后,通过仿真说明了所提算法的优越性和理论结论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency-domain diffusion adaptation over networks with missing input data

Recently, a modified adapt-then-combine diffusion (mATC) strategy has been developed to handle distributed estimation problem with missing regressions (inputs). However, the mATC algorithm only considers the white input scenario and suffers from high complexity for long model filter lengths. To overcome these shortcomings, this paper proposes novel regularization-based frequency-domain diffusion algorithms for networks with missing input data. First, bias-eliminating cost function based on regularization is established by using the frequency-domain diagonal approximation. Then, with stochastic gradient descent, periodic update, and power normalization schemes, we design the regularization-based frequency-domain least mean square (R-FDLMS) algorithm as well as its normalized variant (R-FDNLMS). The latter converges faster than the former under colored inputs. The stability and steady-state behavior of the R-FDNLMS algorithm are also analyzed. Moreover, two effective power estimation methods are presented for both situations without and with the power ratio between the input signal and perturbation noise, along with a reset mechanism in the first case to enhance tracking performance. Finally, simulations are conducted to illustrate the superiority of the proposed algorithms and the validity of theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1