{"title":"利用高分辨率三维 Voronoi 网格分析盐中卤水可用性试验 (BATS) 的现场数据","authors":"Richard Jayne, Kristopher Kuhlman","doi":"10.1016/j.gete.2024.100585","DOIUrl":null,"url":null,"abstract":"<div><p>Salt is an attractive disposal medium for radioactive waste because intact salt is essentially impermeable and non-porous. However, upon drift or borehole excavation a damaged region develops surrounding the excavation which causes increased permeability and porosity creating potential flow paths for brine. Brine leads to corrosion of waste forms and waste packages and is a possible transport vector for radionuclides, so it is important to better understand the early-time behavior and evolution of brine flow in a salt. As a result, this study is part of Task E of DECOVALEX-2023 which focuses on understanding the evolution of thermal, two-phase hydrological, and mechanical processes in the excavation damaged zone in salt. Field measurements from The Brine Availability Test in Salt (BATS) 1a heater experiment are analyzed by implementing a high-resolution three-dimensional numerical model. This salt heater experiment consists of 28 days of heating and 13 days of cooling in a central borehole within bedded salt at the Waste Isolation Pilot Plant (WIPP). Here, the flow simulator PFLOTRAN is utilized; simulations are run on a Voronoi mesh, with temperature-dependent thermal conductivity, permeability and porosity decay away from excavations. The temperature-dependency of permeability is done to match field measurements. Results from the simulation match temperature measured in the field within + /- 0.1 °C and the total brine inflow over the 41-day experiment. This study illustrates that the accuracy of the temperature evolution within salt is critically important when analyzing and modeling experimental data by simulating three heating scenarios of the BATS 1a experiment showing that temperature has a direct effect on total brine inflow.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"39 ","pages":"Article 100585"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing high-resolution 3D Voronoi meshing to analyze field data from the Brine Availability Test in Salt (BATS)\",\"authors\":\"Richard Jayne, Kristopher Kuhlman\",\"doi\":\"10.1016/j.gete.2024.100585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Salt is an attractive disposal medium for radioactive waste because intact salt is essentially impermeable and non-porous. However, upon drift or borehole excavation a damaged region develops surrounding the excavation which causes increased permeability and porosity creating potential flow paths for brine. Brine leads to corrosion of waste forms and waste packages and is a possible transport vector for radionuclides, so it is important to better understand the early-time behavior and evolution of brine flow in a salt. As a result, this study is part of Task E of DECOVALEX-2023 which focuses on understanding the evolution of thermal, two-phase hydrological, and mechanical processes in the excavation damaged zone in salt. Field measurements from The Brine Availability Test in Salt (BATS) 1a heater experiment are analyzed by implementing a high-resolution three-dimensional numerical model. This salt heater experiment consists of 28 days of heating and 13 days of cooling in a central borehole within bedded salt at the Waste Isolation Pilot Plant (WIPP). Here, the flow simulator PFLOTRAN is utilized; simulations are run on a Voronoi mesh, with temperature-dependent thermal conductivity, permeability and porosity decay away from excavations. The temperature-dependency of permeability is done to match field measurements. Results from the simulation match temperature measured in the field within + /- 0.1 °C and the total brine inflow over the 41-day experiment. This study illustrates that the accuracy of the temperature evolution within salt is critically important when analyzing and modeling experimental data by simulating three heating scenarios of the BATS 1a experiment showing that temperature has a direct effect on total brine inflow.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"39 \",\"pages\":\"Article 100585\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000522\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Utilizing high-resolution 3D Voronoi meshing to analyze field data from the Brine Availability Test in Salt (BATS)
Salt is an attractive disposal medium for radioactive waste because intact salt is essentially impermeable and non-porous. However, upon drift or borehole excavation a damaged region develops surrounding the excavation which causes increased permeability and porosity creating potential flow paths for brine. Brine leads to corrosion of waste forms and waste packages and is a possible transport vector for radionuclides, so it is important to better understand the early-time behavior and evolution of brine flow in a salt. As a result, this study is part of Task E of DECOVALEX-2023 which focuses on understanding the evolution of thermal, two-phase hydrological, and mechanical processes in the excavation damaged zone in salt. Field measurements from The Brine Availability Test in Salt (BATS) 1a heater experiment are analyzed by implementing a high-resolution three-dimensional numerical model. This salt heater experiment consists of 28 days of heating and 13 days of cooling in a central borehole within bedded salt at the Waste Isolation Pilot Plant (WIPP). Here, the flow simulator PFLOTRAN is utilized; simulations are run on a Voronoi mesh, with temperature-dependent thermal conductivity, permeability and porosity decay away from excavations. The temperature-dependency of permeability is done to match field measurements. Results from the simulation match temperature measured in the field within + /- 0.1 °C and the total brine inflow over the 41-day experiment. This study illustrates that the accuracy of the temperature evolution within salt is critically important when analyzing and modeling experimental data by simulating three heating scenarios of the BATS 1a experiment showing that temperature has a direct effect on total brine inflow.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.