{"title":"探索用于可再生能源应用的新型双包晶石 A2InAsO6(A=Sr, Ba)的物理性质:Ab-initio 计算","authors":"Anjali Kumari , Jisha Annie Abraham , Mumtaz Manzoor , Abhishek Kumar Mishra , Ayman A. Ghfar , Yedluri Anil Kumar , Ramesh Sharma","doi":"10.1016/j.ssc.2024.115654","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, double perovskites for renewable energy are emerging materials because of their interesting properties such as simple and stable crystal structure. In our study, we theoretically explored the optoelectronic along with mechanical and thermoelectric characteristics of A<sub>2</sub>InAsO<sub>6</sub> (A = Sr, Ba) using density functional theory and semi-classical Boltzmann theory followed by WIEN2k code. The thermodynamic and structural stabilities are determined based on the cohesive energy, enthalpy of formation and tolerance factor. The ductile and brittle behaviour has been checked by Pugh's ratios. The measured values of narrow direct energy band gaps are 0.70 eV for Sr<sub>2</sub>InAsO<sub>6</sub>, and 0.18 eV for Ba<sub>2</sub>InAsO<sub>6</sub> with TB-mBJ approximation. These compositions are potentially used in optoelectronic applications because their electronic characteristics are tuneable. In the energy range 0–12 eV, the compositions under consideration exhibit a single-peaked response while the replacement of cation Sr with Ba caused a shift in optical structures towards lower energies. These compositions are also suitable for thermoelectric systems as they possess high values of the figure of merits at room temperature and the measured values 0.049 eV for Sr<sub>2</sub>InAsO<sub>6</sub>, and 0.10 eV for Ba<sub>2</sub>InSbO<sub>6</sub> are recorded.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115654"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the physical properties of novel double perovskites A2InAsO6 (A=Sr, Ba) for renewable energy applications: Ab-initio calculations\",\"authors\":\"Anjali Kumari , Jisha Annie Abraham , Mumtaz Manzoor , Abhishek Kumar Mishra , Ayman A. Ghfar , Yedluri Anil Kumar , Ramesh Sharma\",\"doi\":\"10.1016/j.ssc.2024.115654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, double perovskites for renewable energy are emerging materials because of their interesting properties such as simple and stable crystal structure. In our study, we theoretically explored the optoelectronic along with mechanical and thermoelectric characteristics of A<sub>2</sub>InAsO<sub>6</sub> (A = Sr, Ba) using density functional theory and semi-classical Boltzmann theory followed by WIEN2k code. The thermodynamic and structural stabilities are determined based on the cohesive energy, enthalpy of formation and tolerance factor. The ductile and brittle behaviour has been checked by Pugh's ratios. The measured values of narrow direct energy band gaps are 0.70 eV for Sr<sub>2</sub>InAsO<sub>6</sub>, and 0.18 eV for Ba<sub>2</sub>InAsO<sub>6</sub> with TB-mBJ approximation. These compositions are potentially used in optoelectronic applications because their electronic characteristics are tuneable. In the energy range 0–12 eV, the compositions under consideration exhibit a single-peaked response while the replacement of cation Sr with Ba caused a shift in optical structures towards lower energies. These compositions are also suitable for thermoelectric systems as they possess high values of the figure of merits at room temperature and the measured values 0.049 eV for Sr<sub>2</sub>InAsO<sub>6</sub>, and 0.10 eV for Ba<sub>2</sub>InSbO<sub>6</sub> are recorded.</p></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"392 \",\"pages\":\"Article 115654\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003810982400231X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003810982400231X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
如今,用于可再生能源的双过氧化物因其简单稳定的晶体结构等有趣的特性而成为新兴材料。在我们的研究中,我们使用密度泛函理论和半经典玻尔兹曼理论以及 WIEN2k 代码,从理论上探讨了 A2InAsO6(A = Sr、Ba)的光电特性以及机械和热电特性。根据内聚能、形成焓和容限因子确定了热力学和结构稳定性。韧性和脆性行为已通过 Pugh 比率进行了检验。根据 TB-mBJ 近似法,Sr2InAsO6 的窄直接能带隙测量值为 0.70 eV,Ba2InAsO6 为 0.18 eV。由于这些成分的电子特性是可调的,因此可用于光电应用。在 0-12 eV 的能量范围内,所考虑的成分表现出单峰响应,而用 Ba 取代阳离子 Sr 会导致光学结构向低能量方向移动。这些成分也适用于热电系统,因为它们在室温下具有较高的优点值,Sr2InAsO6 的测量值为 0.049 eV,Ba2InSbO6 的测量值为 0.10 eV。
Exploring the physical properties of novel double perovskites A2InAsO6 (A=Sr, Ba) for renewable energy applications: Ab-initio calculations
Nowadays, double perovskites for renewable energy are emerging materials because of their interesting properties such as simple and stable crystal structure. In our study, we theoretically explored the optoelectronic along with mechanical and thermoelectric characteristics of A2InAsO6 (A = Sr, Ba) using density functional theory and semi-classical Boltzmann theory followed by WIEN2k code. The thermodynamic and structural stabilities are determined based on the cohesive energy, enthalpy of formation and tolerance factor. The ductile and brittle behaviour has been checked by Pugh's ratios. The measured values of narrow direct energy band gaps are 0.70 eV for Sr2InAsO6, and 0.18 eV for Ba2InAsO6 with TB-mBJ approximation. These compositions are potentially used in optoelectronic applications because their electronic characteristics are tuneable. In the energy range 0–12 eV, the compositions under consideration exhibit a single-peaked response while the replacement of cation Sr with Ba caused a shift in optical structures towards lower energies. These compositions are also suitable for thermoelectric systems as they possess high values of the figure of merits at room temperature and the measured values 0.049 eV for Sr2InAsO6, and 0.10 eV for Ba2InSbO6 are recorded.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.