利用条件深度卷积生成对抗网络预测多层元表面设计

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-08-22 DOI:10.1016/j.ijleo.2024.172005
Ali Nezaratizadeh , Seyed Mohammad Hashemi , Mohammad Bod
{"title":"利用条件深度卷积生成对抗网络预测多层元表面设计","authors":"Ali Nezaratizadeh ,&nbsp;Seyed Mohammad Hashemi ,&nbsp;Mohammad Bod","doi":"10.1016/j.ijleo.2024.172005","DOIUrl":null,"url":null,"abstract":"<div><p>Designing metasurfaces is a challenging task. Traditional methodologies, which primarily depend on iterative procedures, are both time-intensive and require specialized expertise. The proposed algorithm uses conditional deep convolutional generative adversarial networks (cDCGAN) to design metasurfaces. This method instantly create a 2D image of a multi-layer metasurface using the scattering parameter <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span> as the input vector. The algorithm significantly reduces the size of the training dataset by applying pre-training and post-generating steps. The pre-training step involves aliasing and modifying images using a limited color palette. The post-generating step consists of separating the color channels, converting the pixels to vector based images, and fine-tuning the borders. The algorithm is evaluated for three metasurfaces that have unique features compared to the training dataset samples: a single-band metasurface unitcell, a dual-band metasurface unitcell, and a partially trained sample improved by magnetic field analysis. The results show that the proposed algorithm can accurately predict the images of these metasurface unitcells, demonstrating its potential for fast and efficient metasurface design.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"313 ","pages":"Article 172005"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of multi-layer metasurface design using conditional deep convolutional generative adversarial networks\",\"authors\":\"Ali Nezaratizadeh ,&nbsp;Seyed Mohammad Hashemi ,&nbsp;Mohammad Bod\",\"doi\":\"10.1016/j.ijleo.2024.172005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing metasurfaces is a challenging task. Traditional methodologies, which primarily depend on iterative procedures, are both time-intensive and require specialized expertise. The proposed algorithm uses conditional deep convolutional generative adversarial networks (cDCGAN) to design metasurfaces. This method instantly create a 2D image of a multi-layer metasurface using the scattering parameter <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span> as the input vector. The algorithm significantly reduces the size of the training dataset by applying pre-training and post-generating steps. The pre-training step involves aliasing and modifying images using a limited color palette. The post-generating step consists of separating the color channels, converting the pixels to vector based images, and fine-tuning the borders. The algorithm is evaluated for three metasurfaces that have unique features compared to the training dataset samples: a single-band metasurface unitcell, a dual-band metasurface unitcell, and a partially trained sample improved by magnetic field analysis. The results show that the proposed algorithm can accurately predict the images of these metasurface unitcells, demonstrating its potential for fast and efficient metasurface design.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"313 \",\"pages\":\"Article 172005\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004042\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004042","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

设计元曲面是一项具有挑战性的任务。传统方法主要依赖于迭代程序,既耗时又需要专业知识。本文提出的算法使用条件深度卷积生成对抗网络(cDCGAN)来设计元曲面。该方法使用散射参数 S11 作为输入向量,即时创建多层元曲面的二维图像。该算法通过应用预训练和后生成步骤,大大减少了训练数据集的大小。预训练步骤包括使用有限的调色板对图像进行别离和修改。后生成步骤包括分离颜色通道、将像素转换为基于向量的图像以及微调边界。该算法针对三个元表面进行了评估,这些元表面与训练数据集样本相比具有独特的特征:单波段元表面单元单元、双波段元表面单元单元以及通过磁场分析改进的部分训练样本。结果表明,所提出的算法可以准确预测这些元表面单元单元的图像,证明了其在快速高效的元表面设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of multi-layer metasurface design using conditional deep convolutional generative adversarial networks

Designing metasurfaces is a challenging task. Traditional methodologies, which primarily depend on iterative procedures, are both time-intensive and require specialized expertise. The proposed algorithm uses conditional deep convolutional generative adversarial networks (cDCGAN) to design metasurfaces. This method instantly create a 2D image of a multi-layer metasurface using the scattering parameter S11 as the input vector. The algorithm significantly reduces the size of the training dataset by applying pre-training and post-generating steps. The pre-training step involves aliasing and modifying images using a limited color palette. The post-generating step consists of separating the color channels, converting the pixels to vector based images, and fine-tuning the borders. The algorithm is evaluated for three metasurfaces that have unique features compared to the training dataset samples: a single-band metasurface unitcell, a dual-band metasurface unitcell, and a partially trained sample improved by magnetic field analysis. The results show that the proposed algorithm can accurately predict the images of these metasurface unitcells, demonstrating its potential for fast and efficient metasurface design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Optical solitons for generalised perturbed nonlinear Schrödinger model in the presence of dual-power law nonlinear medium Robust image encryption algorithm based on oscillated substitution and effective confusion module with novel chaining permutation and pixel mutation Transport of intensity phase retrieval in the presence of intensity variations and unknown boundary conditions Synthesis and characterization of InGaZnO nanocomposites: An insight of optical, dielectric, and magnetic properties Ultra-broadband mid-infrared supercontinuum generation in square lattice As2S3 chalcogenide photonic crystal fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1