{"title":"中心城区通风廊道的气象效应:武汉案例研究","authors":"","doi":"10.1016/j.scs.2024.105752","DOIUrl":null,"url":null,"abstract":"<div><p>How ventilation corridors affect urban climate is attracting researchers' attention. Taking the inland Chinese city of Wuhan as an example, this paper first uses remote sensing image technology to evaluate the urban thermal environment. Additionally, based on the GIS/RS spatial analysis method, the ventilation corridors in the central urban area are identified and constructed. Finally, the mesoscale meteorological model WRF-UCM is used to simulate four cases with different corridor forms to explore the impact of different corridors on the climate environment in Wuhan during the summer. The results indicate that: (1) The WRF-UCM model, when coupled with LCZ classification, can significantly improve the accuracy of mesoscale urban canopy meteorological field simulations. (2) The water corridors located in the central urban area can effectively regulate the temperature and wind environment during summer. In the high-temperature period of the day, the average temperature in the central city decreases by 0.3–0.4 °C, the heat island proportion index decreases by 1.61 %, and the strong heat island proportion index decreases by 1.89 % in the afternoon. During the period of low temperature, the average wind speed in the central urban area increased by 0.05 m/s increase, and even increased by 0.1 m/s. (3) The specific humidity value of the green corridor is reduced by 0.0000136 kg/kg in comparison to the construction land in the corridor, while the water corridor can increase by 0.000133 kg/kg. If the two kinds of surface, water and green land, are organically combined in the corridor, it will be able to improve the hot and humid conditions in Wuhan in summer. (4)Low-rise and low-density construction land as the corridors in the central urban area can not improve the urban thermal and wind environment. Through an attempt to conduct a complete workflow of urban heat island analysis, ventilation corridor identification and setting, urban climate simulation, analysis and summary, the authors believe that it is an effective set of working methods in sustainable urban planning, design, and policy-making. The implementation of pertinent research findings in the domain of urban planning and design demonstrates its universal applicability and has the potential to extend to analogous research and practice.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meteorological effects of ventilation corridor in central urban areas: A case study of Wuhan\",\"authors\":\"\",\"doi\":\"10.1016/j.scs.2024.105752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>How ventilation corridors affect urban climate is attracting researchers' attention. Taking the inland Chinese city of Wuhan as an example, this paper first uses remote sensing image technology to evaluate the urban thermal environment. Additionally, based on the GIS/RS spatial analysis method, the ventilation corridors in the central urban area are identified and constructed. Finally, the mesoscale meteorological model WRF-UCM is used to simulate four cases with different corridor forms to explore the impact of different corridors on the climate environment in Wuhan during the summer. The results indicate that: (1) The WRF-UCM model, when coupled with LCZ classification, can significantly improve the accuracy of mesoscale urban canopy meteorological field simulations. (2) The water corridors located in the central urban area can effectively regulate the temperature and wind environment during summer. In the high-temperature period of the day, the average temperature in the central city decreases by 0.3–0.4 °C, the heat island proportion index decreases by 1.61 %, and the strong heat island proportion index decreases by 1.89 % in the afternoon. During the period of low temperature, the average wind speed in the central urban area increased by 0.05 m/s increase, and even increased by 0.1 m/s. (3) The specific humidity value of the green corridor is reduced by 0.0000136 kg/kg in comparison to the construction land in the corridor, while the water corridor can increase by 0.000133 kg/kg. If the two kinds of surface, water and green land, are organically combined in the corridor, it will be able to improve the hot and humid conditions in Wuhan in summer. (4)Low-rise and low-density construction land as the corridors in the central urban area can not improve the urban thermal and wind environment. Through an attempt to conduct a complete workflow of urban heat island analysis, ventilation corridor identification and setting, urban climate simulation, analysis and summary, the authors believe that it is an effective set of working methods in sustainable urban planning, design, and policy-making. The implementation of pertinent research findings in the domain of urban planning and design demonstrates its universal applicability and has the potential to extend to analogous research and practice.</p></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724005778\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724005778","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Meteorological effects of ventilation corridor in central urban areas: A case study of Wuhan
How ventilation corridors affect urban climate is attracting researchers' attention. Taking the inland Chinese city of Wuhan as an example, this paper first uses remote sensing image technology to evaluate the urban thermal environment. Additionally, based on the GIS/RS spatial analysis method, the ventilation corridors in the central urban area are identified and constructed. Finally, the mesoscale meteorological model WRF-UCM is used to simulate four cases with different corridor forms to explore the impact of different corridors on the climate environment in Wuhan during the summer. The results indicate that: (1) The WRF-UCM model, when coupled with LCZ classification, can significantly improve the accuracy of mesoscale urban canopy meteorological field simulations. (2) The water corridors located in the central urban area can effectively regulate the temperature and wind environment during summer. In the high-temperature period of the day, the average temperature in the central city decreases by 0.3–0.4 °C, the heat island proportion index decreases by 1.61 %, and the strong heat island proportion index decreases by 1.89 % in the afternoon. During the period of low temperature, the average wind speed in the central urban area increased by 0.05 m/s increase, and even increased by 0.1 m/s. (3) The specific humidity value of the green corridor is reduced by 0.0000136 kg/kg in comparison to the construction land in the corridor, while the water corridor can increase by 0.000133 kg/kg. If the two kinds of surface, water and green land, are organically combined in the corridor, it will be able to improve the hot and humid conditions in Wuhan in summer. (4)Low-rise and low-density construction land as the corridors in the central urban area can not improve the urban thermal and wind environment. Through an attempt to conduct a complete workflow of urban heat island analysis, ventilation corridor identification and setting, urban climate simulation, analysis and summary, the authors believe that it is an effective set of working methods in sustainable urban planning, design, and policy-making. The implementation of pertinent research findings in the domain of urban planning and design demonstrates its universal applicability and has the potential to extend to analogous research and practice.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;