Jayashan Adhikari , Rakesh K. Singh , Koushik Adhikari , Bhimanagouda S. Patil
{"title":"在模拟市场贮存条件下,利用连续流高压均质技术保持西瓜汁的营养质量和稳定性","authors":"Jayashan Adhikari , Rakesh K. Singh , Koushik Adhikari , Bhimanagouda S. Patil","doi":"10.1016/j.ifset.2024.103783","DOIUrl":null,"url":null,"abstract":"<div><p>This study examined the efficacy of continuous flow high-pressure homogenization (CFHPH) under varying pressures, inlet temperatures, and flow rates, in preserving the nutritional quality and stability of watermelon juice during simulated market conditions and compared it with traditional high-temperature short-time (HTST) processing. The retention of ascorbic acid, carotenoids, and amino acids was analyzed using liquid chromatography, while PPO (polyphenol oxidase) and POD (peroxidase) enzyme activity was assessed using a UV–vis spectrophotometer.</p><p>We observed a significant decrease (<em>p</em> ≤ 0.05) in ascorbic acid levels after 15 days of storage. For carotenoids, the impact was influenced by the interaction of pressure, flow rate, and inlet temperature within CFHPH, with no clear trend emerging regarding their preservation over 45 days of storage at 4 °C. However, overall retention of carotenoids surpassed that of HTST samples. Both methods enhanced free amino acid contents significantly and decreased PPO and POD activity, with HTST being slightly more effective. Ornithine and histidine concentrations significantly increased, with up to a fourfold rise in samples treated with 300 MPa pressure and up to a tenfold rise for HTST at 95 °C after 45 days of storage. This study suggests optimizing the CFHPH process to enhance the shelf-life and nutritional value of watermelon juice, offering consumers a healthier and longer-lasting choice.</p></div><div><h3>Industrial relevance</h3><p>Our findings highlight CFHPH's higher retention of bioactive compounds, reduction in degradative enzyme activity, and enhancement of the amino acid profile, making it a compelling choice for the fruit juice processing industry. Despite the energy-intensive nature of CFHPH, its ability to preserve vital bioactive compounds like carotenoids and ascorbic acid addresses the growing consumer demand for nutritious and stable juice options. The benefits of CFHPH in maintaining juice quality and nutritional value may outweigh the associated energy costs, making it a promising technology for fruit juice processing.</p></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103783"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous flow high-pressure homogenization for preserving the nutritional quality and stability of watermelon juice under simulated market storage conditions\",\"authors\":\"Jayashan Adhikari , Rakesh K. Singh , Koushik Adhikari , Bhimanagouda S. Patil\",\"doi\":\"10.1016/j.ifset.2024.103783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examined the efficacy of continuous flow high-pressure homogenization (CFHPH) under varying pressures, inlet temperatures, and flow rates, in preserving the nutritional quality and stability of watermelon juice during simulated market conditions and compared it with traditional high-temperature short-time (HTST) processing. The retention of ascorbic acid, carotenoids, and amino acids was analyzed using liquid chromatography, while PPO (polyphenol oxidase) and POD (peroxidase) enzyme activity was assessed using a UV–vis spectrophotometer.</p><p>We observed a significant decrease (<em>p</em> ≤ 0.05) in ascorbic acid levels after 15 days of storage. For carotenoids, the impact was influenced by the interaction of pressure, flow rate, and inlet temperature within CFHPH, with no clear trend emerging regarding their preservation over 45 days of storage at 4 °C. However, overall retention of carotenoids surpassed that of HTST samples. Both methods enhanced free amino acid contents significantly and decreased PPO and POD activity, with HTST being slightly more effective. Ornithine and histidine concentrations significantly increased, with up to a fourfold rise in samples treated with 300 MPa pressure and up to a tenfold rise for HTST at 95 °C after 45 days of storage. This study suggests optimizing the CFHPH process to enhance the shelf-life and nutritional value of watermelon juice, offering consumers a healthier and longer-lasting choice.</p></div><div><h3>Industrial relevance</h3><p>Our findings highlight CFHPH's higher retention of bioactive compounds, reduction in degradative enzyme activity, and enhancement of the amino acid profile, making it a compelling choice for the fruit juice processing industry. Despite the energy-intensive nature of CFHPH, its ability to preserve vital bioactive compounds like carotenoids and ascorbic acid addresses the growing consumer demand for nutritious and stable juice options. The benefits of CFHPH in maintaining juice quality and nutritional value may outweigh the associated energy costs, making it a promising technology for fruit juice processing.</p></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"97 \",\"pages\":\"Article 103783\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856424002224\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002224","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Continuous flow high-pressure homogenization for preserving the nutritional quality and stability of watermelon juice under simulated market storage conditions
This study examined the efficacy of continuous flow high-pressure homogenization (CFHPH) under varying pressures, inlet temperatures, and flow rates, in preserving the nutritional quality and stability of watermelon juice during simulated market conditions and compared it with traditional high-temperature short-time (HTST) processing. The retention of ascorbic acid, carotenoids, and amino acids was analyzed using liquid chromatography, while PPO (polyphenol oxidase) and POD (peroxidase) enzyme activity was assessed using a UV–vis spectrophotometer.
We observed a significant decrease (p ≤ 0.05) in ascorbic acid levels after 15 days of storage. For carotenoids, the impact was influenced by the interaction of pressure, flow rate, and inlet temperature within CFHPH, with no clear trend emerging regarding their preservation over 45 days of storage at 4 °C. However, overall retention of carotenoids surpassed that of HTST samples. Both methods enhanced free amino acid contents significantly and decreased PPO and POD activity, with HTST being slightly more effective. Ornithine and histidine concentrations significantly increased, with up to a fourfold rise in samples treated with 300 MPa pressure and up to a tenfold rise for HTST at 95 °C after 45 days of storage. This study suggests optimizing the CFHPH process to enhance the shelf-life and nutritional value of watermelon juice, offering consumers a healthier and longer-lasting choice.
Industrial relevance
Our findings highlight CFHPH's higher retention of bioactive compounds, reduction in degradative enzyme activity, and enhancement of the amino acid profile, making it a compelling choice for the fruit juice processing industry. Despite the energy-intensive nature of CFHPH, its ability to preserve vital bioactive compounds like carotenoids and ascorbic acid addresses the growing consumer demand for nutritious and stable juice options. The benefits of CFHPH in maintaining juice quality and nutritional value may outweigh the associated energy costs, making it a promising technology for fruit juice processing.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.