多模态三维图像中异常区域检测的知识型随机机器学习和数据融合

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-08-22 DOI:10.1016/j.ins.2024.121354
{"title":"多模态三维图像中异常区域检测的知识型随机机器学习和数据融合","authors":"","doi":"10.1016/j.ins.2024.121354","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from multiple modalities. We address these issues by proposing a novel framework with data fusion technology to leverage domain-specific knowledge and multimodal labeled data, as well as employ the power of randomized learning techniques. To demonstrate the proposed framework efficiency, we apply it to the challenging task of detecting subtle pathologies in MRI scans. A distinct feature of the resulting solution is that it explicitly incorporates evidence-based medical knowledge about pathologies into the feature maps. Our experiments show that the method is capable of achieving lesion detection in 71% of subjects by using just one such feature. Integrating information from all feature maps and data modalities enhances detection rate to 78%. Using stochastic configuration networks to initialize the weights of the classification model enables to increase precision metric by 18% as compared to deterministic approaches. This demonstrates the possibility and practical viability of building efficient and interpretable randomised algorithms for automated anomaly detection in complex multimodal data.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-informed randomized machine learning and data fusion for anomaly areas detection in multimodal 3D images\",\"authors\":\"\",\"doi\":\"10.1016/j.ins.2024.121354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from multiple modalities. We address these issues by proposing a novel framework with data fusion technology to leverage domain-specific knowledge and multimodal labeled data, as well as employ the power of randomized learning techniques. To demonstrate the proposed framework efficiency, we apply it to the challenging task of detecting subtle pathologies in MRI scans. A distinct feature of the resulting solution is that it explicitly incorporates evidence-based medical knowledge about pathologies into the feature maps. Our experiments show that the method is capable of achieving lesion detection in 71% of subjects by using just one such feature. Integrating information from all feature maps and data modalities enhances detection rate to 78%. Using stochastic configuration networks to initialize the weights of the classification model enables to increase precision metric by 18% as compared to deterministic approaches. This demonstrates the possibility and practical viability of building efficient and interpretable randomised algorithms for automated anomaly detection in complex multimodal data.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524012684\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524012684","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多模态三维图像中的异常区域检测是一个长期存在但却很难解决的机器学习问题。纯粹的数据驱动方法往往无法完成此类任务,因为它们很少将特定领域的知识纳入算法,也不能充分利用来自多种模态的信息。为了解决这些问题,我们提出了一种采用数据融合技术的新型框架,以利用特定领域的知识和多模态标记数据,并利用随机学习技术的力量。为了证明所提框架的效率,我们将其应用于检测核磁共振成像扫描中的细微病变这一具有挑战性的任务。由此产生的解决方案的一个显著特点是,它明确地将基于证据的病理医学知识纳入特征图中。我们的实验表明,该方法只需使用一个这样的特征,就能对 71% 的受试者进行病变检测。整合来自所有特征图和数据模式的信息可将检测率提高到 78%。与确定性方法相比,使用随机配置网络初始化分类模型的权重可将精确度指标提高 18%。这证明了在复杂的多模态数据中建立高效、可解释的随机算法进行自动异常检测的可能性和实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-informed randomized machine learning and data fusion for anomaly areas detection in multimodal 3D images

We consider a long-standing yet hard and largely open machine learning problem of anomaly areas detection in multimodal 3D images. Purely data-driven methods often fail in such tasks because rarely incorporating domain-specific knowledge into the algorithm and do not fully utilize information from multiple modalities. We address these issues by proposing a novel framework with data fusion technology to leverage domain-specific knowledge and multimodal labeled data, as well as employ the power of randomized learning techniques. To demonstrate the proposed framework efficiency, we apply it to the challenging task of detecting subtle pathologies in MRI scans. A distinct feature of the resulting solution is that it explicitly incorporates evidence-based medical knowledge about pathologies into the feature maps. Our experiments show that the method is capable of achieving lesion detection in 71% of subjects by using just one such feature. Integrating information from all feature maps and data modalities enhances detection rate to 78%. Using stochastic configuration networks to initialize the weights of the classification model enables to increase precision metric by 18% as compared to deterministic approaches. This demonstrates the possibility and practical viability of building efficient and interpretable randomised algorithms for automated anomaly detection in complex multimodal data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Wavelet structure-texture-aware super-resolution for pedestrian detection HVASR: Enhancing 360-degree video delivery with viewport-aware super resolution KNEG-CL: Unveiling data patterns using a k-nearest neighbor evolutionary graph for efficient clustering Fréchet and Gateaux gH-differentiability for interval valued functions of multiple variables Detecting fuzzy-rough conditional anomalies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1