Rayson Bock Hing Lim, Zhan Pei Heng, Kelvin Ho, Kane Koh, Hwee Ping Lim, Kelvin Lim, Wendy Sng, Gordon Tan, Ernest Teo, Tze Hoong Chua
{"title":"模拟新加坡野猪种群首次爆发非洲猪瘟疫情","authors":"Rayson Bock Hing Lim, Zhan Pei Heng, Kelvin Ho, Kane Koh, Hwee Ping Lim, Kelvin Lim, Wendy Sng, Gordon Tan, Ernest Teo, Tze Hoong Chua","doi":"10.1155/2024/5546893","DOIUrl":null,"url":null,"abstract":"<div>\n <p>African swine fever (ASF) is a virulent and lethal disease affecting domestic pigs and wild boars, with serious implications for biodiversity, food security, and the economy. Since its reemergence in Europe, ASF has become widespread, and Singapore reported its first ASF outbreak in its wild boar population. To understand the transmission dynamics in Singapore’s urban landscape, an agent-based spatiotemporal model was designed to mechanistically model the wild boar dispersal and their interactions for ASF transmission. We investigated the impacts of wild boar dispersal capacity and carcass removal actions on the spatiotemporal dynamics of disease transmission. The model predictions were validated using observed wild boar mortality reports in Singapore and suggested multiple disease entry points into our wild boar population. Our simulations estimated that the ASF outbreak in Singapore would peak within 3 weeks and lasts for less than 70 days. Carcass-mediated transmission was evident with epidemic reoccurrence through infectious carcasses accounting for 18%–75% of the iterations. Increasing wild boar dispersal capacity expanded the geographic extent of ASF infection, potentially spreading further inland. Simulated carcass removal and decontamination measures slightly reduced the epidemic duration by up to 13.5 days and reoccurrence through infectious carcass by 10.8%. Carcass removal and decontamination efforts, along with identifying and blocking high-risk areas (e.g., dispersal corridors), are important in controlling the transmission of ASF through contaminated fomites and limiting the dispersal of infected animals. Establishing surveillance programmes and enhancing detection capabilities are also crucial for the successful management and control of infectious diseases.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5546893","citationCount":"0","resultStr":"{\"title\":\"Modeling Singapore’s First African Swine Fever Outbreak in Wild Boar Populations\",\"authors\":\"Rayson Bock Hing Lim, Zhan Pei Heng, Kelvin Ho, Kane Koh, Hwee Ping Lim, Kelvin Lim, Wendy Sng, Gordon Tan, Ernest Teo, Tze Hoong Chua\",\"doi\":\"10.1155/2024/5546893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>African swine fever (ASF) is a virulent and lethal disease affecting domestic pigs and wild boars, with serious implications for biodiversity, food security, and the economy. Since its reemergence in Europe, ASF has become widespread, and Singapore reported its first ASF outbreak in its wild boar population. To understand the transmission dynamics in Singapore’s urban landscape, an agent-based spatiotemporal model was designed to mechanistically model the wild boar dispersal and their interactions for ASF transmission. We investigated the impacts of wild boar dispersal capacity and carcass removal actions on the spatiotemporal dynamics of disease transmission. The model predictions were validated using observed wild boar mortality reports in Singapore and suggested multiple disease entry points into our wild boar population. Our simulations estimated that the ASF outbreak in Singapore would peak within 3 weeks and lasts for less than 70 days. Carcass-mediated transmission was evident with epidemic reoccurrence through infectious carcasses accounting for 18%–75% of the iterations. Increasing wild boar dispersal capacity expanded the geographic extent of ASF infection, potentially spreading further inland. Simulated carcass removal and decontamination measures slightly reduced the epidemic duration by up to 13.5 days and reoccurrence through infectious carcass by 10.8%. Carcass removal and decontamination efforts, along with identifying and blocking high-risk areas (e.g., dispersal corridors), are important in controlling the transmission of ASF through contaminated fomites and limiting the dispersal of infected animals. Establishing surveillance programmes and enhancing detection capabilities are also crucial for the successful management and control of infectious diseases.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5546893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5546893\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5546893","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Modeling Singapore’s First African Swine Fever Outbreak in Wild Boar Populations
African swine fever (ASF) is a virulent and lethal disease affecting domestic pigs and wild boars, with serious implications for biodiversity, food security, and the economy. Since its reemergence in Europe, ASF has become widespread, and Singapore reported its first ASF outbreak in its wild boar population. To understand the transmission dynamics in Singapore’s urban landscape, an agent-based spatiotemporal model was designed to mechanistically model the wild boar dispersal and their interactions for ASF transmission. We investigated the impacts of wild boar dispersal capacity and carcass removal actions on the spatiotemporal dynamics of disease transmission. The model predictions were validated using observed wild boar mortality reports in Singapore and suggested multiple disease entry points into our wild boar population. Our simulations estimated that the ASF outbreak in Singapore would peak within 3 weeks and lasts for less than 70 days. Carcass-mediated transmission was evident with epidemic reoccurrence through infectious carcasses accounting for 18%–75% of the iterations. Increasing wild boar dispersal capacity expanded the geographic extent of ASF infection, potentially spreading further inland. Simulated carcass removal and decontamination measures slightly reduced the epidemic duration by up to 13.5 days and reoccurrence through infectious carcass by 10.8%. Carcass removal and decontamination efforts, along with identifying and blocking high-risk areas (e.g., dispersal corridors), are important in controlling the transmission of ASF through contaminated fomites and limiting the dispersal of infected animals. Establishing surveillance programmes and enhancing detection capabilities are also crucial for the successful management and control of infectious diseases.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.