Thomas Toft Lindkvist, Iden Djavani-Tabrizi, Li Chen, Steen Brøndsted Nielsen
{"title":"气相福斯特共振能量转移的冻结构象。","authors":"Thomas Toft Lindkvist, Iden Djavani-Tabrizi, Li Chen, Steen Brøndsted Nielsen","doi":"10.1002/cplu.202400448","DOIUrl":null,"url":null,"abstract":"<p><p>Various techniques are available to illuminate geometric structures of molecular ions in gas phase, such as Förster Resonance Energy Transfer (FRET) informing on distances between two dyes covalently attached to a molecule. Typically, cationic rhodamines, which absorb and emit visible light, are used for labeling. Extensive work has revealed that the transition energy of a rhodamine is intricately linked to its nearby microenvironment, with nearby charges causing Stark-shifted emission. This occurs because the inter-dye Coulomb interaction is weaker in the excited state (S<sub>1</sub>) than in the ground state (S<sub>0</sub>) due to the increase in polarizability upon excitation. Therefore, absorption and emission spectra, along with FRET efficiencies, provide insights into structural motifs. At room temperature, multiple conformers often co-exist, leading to overlapping absorption bands among different conformers and broad spectra. To study specific conformers, it is necessary to isolate them, for example, using ion-mobility spectrometry. Another approach is to reduce temperature, which results in spectral narrowing and distinct absorption bands, allowing for the selection of specific conformers through selective excitation. Here, we describe the instrumentation used for cryogenically cold FRET experiments and discuss recent results for small model systems, as well as future directions for a technique still in its infancy.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400448"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freezing Conformers for Gas-Phase Förster Resonance Energy Transfer.\",\"authors\":\"Thomas Toft Lindkvist, Iden Djavani-Tabrizi, Li Chen, Steen Brøndsted Nielsen\",\"doi\":\"10.1002/cplu.202400448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various techniques are available to illuminate geometric structures of molecular ions in gas phase, such as Förster Resonance Energy Transfer (FRET) informing on distances between two dyes covalently attached to a molecule. Typically, cationic rhodamines, which absorb and emit visible light, are used for labeling. Extensive work has revealed that the transition energy of a rhodamine is intricately linked to its nearby microenvironment, with nearby charges causing Stark-shifted emission. This occurs because the inter-dye Coulomb interaction is weaker in the excited state (S<sub>1</sub>) than in the ground state (S<sub>0</sub>) due to the increase in polarizability upon excitation. Therefore, absorption and emission spectra, along with FRET efficiencies, provide insights into structural motifs. At room temperature, multiple conformers often co-exist, leading to overlapping absorption bands among different conformers and broad spectra. To study specific conformers, it is necessary to isolate them, for example, using ion-mobility spectrometry. Another approach is to reduce temperature, which results in spectral narrowing and distinct absorption bands, allowing for the selection of specific conformers through selective excitation. Here, we describe the instrumentation used for cryogenically cold FRET experiments and discuss recent results for small model systems, as well as future directions for a technique still in its infancy.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400448\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400448\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400448","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Freezing Conformers for Gas-Phase Förster Resonance Energy Transfer.
Various techniques are available to illuminate geometric structures of molecular ions in gas phase, such as Förster Resonance Energy Transfer (FRET) informing on distances between two dyes covalently attached to a molecule. Typically, cationic rhodamines, which absorb and emit visible light, are used for labeling. Extensive work has revealed that the transition energy of a rhodamine is intricately linked to its nearby microenvironment, with nearby charges causing Stark-shifted emission. This occurs because the inter-dye Coulomb interaction is weaker in the excited state (S1) than in the ground state (S0) due to the increase in polarizability upon excitation. Therefore, absorption and emission spectra, along with FRET efficiencies, provide insights into structural motifs. At room temperature, multiple conformers often co-exist, leading to overlapping absorption bands among different conformers and broad spectra. To study specific conformers, it is necessary to isolate them, for example, using ion-mobility spectrometry. Another approach is to reduce temperature, which results in spectral narrowing and distinct absorption bands, allowing for the selection of specific conformers through selective excitation. Here, we describe the instrumentation used for cryogenically cold FRET experiments and discuss recent results for small model systems, as well as future directions for a technique still in its infancy.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.