refMLST:基于参考的多焦点序列分型可实现通用细菌分型。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-08-27 DOI:10.1186/s12859-024-05913-4
Mondher Khdhiri, Ella Thomas, Chanel de Smet, Priyanka Chandar, Induja Chandrakumar, Jean M Davidson, Paul Anderson, Samuel D Chorlton
{"title":"refMLST:基于参考的多焦点序列分型可实现通用细菌分型。","authors":"Mondher Khdhiri, Ella Thomas, Chanel de Smet, Priyanka Chandar, Induja Chandrakumar, Jean M Davidson, Paul Anderson, Samuel D Chorlton","doi":"10.1186/s12859-024-05913-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation.</p><p><strong>Results: </strong>When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake.</p><p><strong>Conclusions: </strong>refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination.</p><p><strong>Availability and implementation: </strong>refMLST is freely available for academic use at https://bugseq.com/academic .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351335/pdf/","citationCount":"0","resultStr":"{\"title\":\"refMLST: reference-based multilocus sequence typing enables universal bacterial typing.\",\"authors\":\"Mondher Khdhiri, Ella Thomas, Chanel de Smet, Priyanka Chandar, Induja Chandrakumar, Jean M Davidson, Paul Anderson, Samuel D Chorlton\",\"doi\":\"10.1186/s12859-024-05913-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation.</p><p><strong>Results: </strong>When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake.</p><p><strong>Conclusions: </strong>refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination.</p><p><strong>Availability and implementation: </strong>refMLST is freely available for academic use at https://bugseq.com/academic .</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05913-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05913-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:细菌爆发基因组调查的常用方法(包括 SNP 和逐基因方法)分别受到背景基因组和等位基因计划要求的限制。因此,这些方法只适用于部分已知生物,而对新型病原体或研究较少的病原体则无法奏效。我们引入了 refMLST,这是一种使用细菌参考基因组的逐基因方法,可形成一种可扩展、可重现且稳健的方法来执行疫情调查:结果:与 chewieSnake 等常用工具相比,当应用于包括 1263 个肠炎沙门氏菌、331 个小肠结肠炎耶尔森氏菌和 6526 个空肠弯曲菌基因组在内的多种导致疫情爆发的细菌时,refMLST 实现了一致的聚类、更高的分辨率和更快的处理速度。结论:refMLST 是一种新颖的多焦点序列分型方法,适用于任何具有公共参考基因组的细菌物种,不需要策划方案,并能自动考虑基因重组。可用性和实施:refMLST 可在 https://bugseq.com/academic 免费供学术界使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
refMLST: reference-based multilocus sequence typing enables universal bacterial typing.

Background: Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation.

Results: When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake.

Conclusions: refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination.

Availability and implementation: refMLST is freely available for academic use at https://bugseq.com/academic .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1