从配方到结构:从无定形固体分散体中提取新型吲哚美辛多晶体结构的三维电子衍射。

IF 2.9 2区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY IUCrJ Pub Date : 2024-09-01 DOI:10.1107/S2052252524008121
Helen W. Leung , Royston C. B. Copley , Giulio I. Lampronti , Sarah J. Day , Lucy K. Saunders , Duncan N. Johnstone , Paul A. Midgley
{"title":"从配方到结构:从无定形固体分散体中提取新型吲哚美辛多晶体结构的三维电子衍射。","authors":"Helen W. Leung ,&nbsp;Royston C. B. Copley ,&nbsp;Giulio I. Lampronti ,&nbsp;Sarah J. Day ,&nbsp;Lucy K. Saunders ,&nbsp;Duncan N. Johnstone ,&nbsp;Paul A. Midgley","doi":"10.1107/S2052252524008121","DOIUrl":null,"url":null,"abstract":"<div><p>3D electron diffraction (3DED) was used to elucidate the structure of a new ninth polymorph of indomethacin from an amorphous solid dispersion, which are product formulations used to improve the dissolution performance of active pharmaceutical ingredients with poor aqueous solubility. Insights from the structure solution allowed for a simpler crystallization route for this polymorph to be deduced, demonstrating the relevance of 3DED within drug development.</p></div><div><p>3D electron diffraction (3DED) is increasingly employed to determine molec­ular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using di­chloro­methane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 5","pages":"Pages 744-748"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364028/pdf/","citationCount":"0","resultStr":"{\"title\":\"From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion\",\"authors\":\"Helen W. Leung ,&nbsp;Royston C. B. Copley ,&nbsp;Giulio I. Lampronti ,&nbsp;Sarah J. Day ,&nbsp;Lucy K. Saunders ,&nbsp;Duncan N. Johnstone ,&nbsp;Paul A. Midgley\",\"doi\":\"10.1107/S2052252524008121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D electron diffraction (3DED) was used to elucidate the structure of a new ninth polymorph of indomethacin from an amorphous solid dispersion, which are product formulations used to improve the dissolution performance of active pharmaceutical ingredients with poor aqueous solubility. Insights from the structure solution allowed for a simpler crystallization route for this polymorph to be deduced, demonstrating the relevance of 3DED within drug development.</p></div><div><p>3D electron diffraction (3DED) is increasingly employed to determine molec­ular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using di­chloro­methane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.</p></div>\",\"PeriodicalId\":14775,\"journal\":{\"name\":\"IUCrJ\",\"volume\":\"11 5\",\"pages\":\"Pages 744-748\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUCrJ\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2052252524000733\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000733","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维电子衍射(3DED)越来越多地被用于确定微晶体的分子和晶体结构。吲哚美辛是一种知名的上市小分子非甾体抗炎药物,已知有八种多晶型,迄今已阐明了其中四种结构。利用 3DED 技术,我们确定了在无定形固体分散体(一种有时用于水溶性较差的活性药物成分的产品配方)中发现的第九种新多态体 σ 的结构。随后,我们发现σ吲哚美辛可以通过二氯甲烷直接溶剂蒸发制得。这些结果证明了 3DED 在药物开发中直接探究产品配方的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion

3D electron diffraction (3DED) was used to elucidate the structure of a new ninth polymorph of indomethacin from an amorphous solid dispersion, which are product formulations used to improve the dissolution performance of active pharmaceutical ingredients with poor aqueous solubility. Insights from the structure solution allowed for a simpler crystallization route for this polymorph to be deduced, demonstrating the relevance of 3DED within drug development.

3D electron diffraction (3DED) is increasingly employed to determine molec­ular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using di­chloro­methane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IUCrJ
IUCrJ CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.50
自引率
5.10%
发文量
95
审稿时长
10 weeks
期刊介绍: IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr). The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.
期刊最新文献
Structural transformations and stability of benzo[a]pyrene under high pressure. Tracking anharmonic oscillations in the structure of β-1,3-diacetylpyrene. Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization. Structure of an ex vivoDrosophila TOM complex determined by single-particle cryoEM. Incommensurately modulated structure of Zn4Si2O7(OH)2·H2O at high pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1