{"title":"用于体内区分不同隐球菌分子类型的脑隐球菌瘤小鼠模型的定量 MRI。","authors":"Luigi Musetta, Shannon Helsper, Lara Roosen, Dries Maes, Anca Croitor Sava, Liesbeth Vanherp, Willy Gsell, Greetje Vande Velde, Katrien Lagrou, Wieland Meyer, Uwe Himmelreich","doi":"10.3390/jof10080593","DOIUrl":null,"url":null,"abstract":"<p><p>The controversially discussed taxonomy of the <i>Cryptococcus neoformans</i>/<i>Cryptococcus gattii</i> species complex encompasses at least eight major molecular types. Cerebral cryptococcomas are a common manifestation of cryptococcal neurological disease. In this study, we compared neurotypical symptoms and differential neurovirulence induced by one representative isolate for each of the eight molecular types studied. We compared single focal lesions caused by the different isolates and evaluated the potential relationships between the fungal burden and properties obtained with quantitative magnetic resonance imaging (qMRI) techniques such as diffusion MRI, T<sub>2</sub> relaxometry and magnetic resonance spectroscopy (MRS). We observed an inverse correlation between parametric data and lesion density, and we were able to monitor longitudinally biophysical properties of cryptococcomas induced by different molecular types. Because the MRI/MRS techniques are also clinically available, the same approach could be used to assess image-based biophysical properties that correlate with fungal cell density in lesions in patients to determine personalized treatments.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355240/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative MRI of a Cerebral Cryptococcoma Mouse Model for In Vivo Distinction between Different Cryptococcal Molecular Types.\",\"authors\":\"Luigi Musetta, Shannon Helsper, Lara Roosen, Dries Maes, Anca Croitor Sava, Liesbeth Vanherp, Willy Gsell, Greetje Vande Velde, Katrien Lagrou, Wieland Meyer, Uwe Himmelreich\",\"doi\":\"10.3390/jof10080593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The controversially discussed taxonomy of the <i>Cryptococcus neoformans</i>/<i>Cryptococcus gattii</i> species complex encompasses at least eight major molecular types. Cerebral cryptococcomas are a common manifestation of cryptococcal neurological disease. In this study, we compared neurotypical symptoms and differential neurovirulence induced by one representative isolate for each of the eight molecular types studied. We compared single focal lesions caused by the different isolates and evaluated the potential relationships between the fungal burden and properties obtained with quantitative magnetic resonance imaging (qMRI) techniques such as diffusion MRI, T<sub>2</sub> relaxometry and magnetic resonance spectroscopy (MRS). We observed an inverse correlation between parametric data and lesion density, and we were able to monitor longitudinally biophysical properties of cryptococcomas induced by different molecular types. Because the MRI/MRS techniques are also clinically available, the same approach could be used to assess image-based biophysical properties that correlate with fungal cell density in lesions in patients to determine personalized treatments.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355240/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof10080593\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10080593","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Quantitative MRI of a Cerebral Cryptococcoma Mouse Model for In Vivo Distinction between Different Cryptococcal Molecular Types.
The controversially discussed taxonomy of the Cryptococcus neoformans/Cryptococcus gattii species complex encompasses at least eight major molecular types. Cerebral cryptococcomas are a common manifestation of cryptococcal neurological disease. In this study, we compared neurotypical symptoms and differential neurovirulence induced by one representative isolate for each of the eight molecular types studied. We compared single focal lesions caused by the different isolates and evaluated the potential relationships between the fungal burden and properties obtained with quantitative magnetic resonance imaging (qMRI) techniques such as diffusion MRI, T2 relaxometry and magnetic resonance spectroscopy (MRS). We observed an inverse correlation between parametric data and lesion density, and we were able to monitor longitudinally biophysical properties of cryptococcomas induced by different molecular types. Because the MRI/MRS techniques are also clinically available, the same approach could be used to assess image-based biophysical properties that correlate with fungal cell density in lesions in patients to determine personalized treatments.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.