Seon Woo Kim, Hyeon Joo Lee, Naye Choi, Ee-Kyung Kim, Jung Min Ko
{"title":"采用生物素巨剂量疗法治疗患有整体羧化酶合成酶缺乏症的新生儿,临床症状明显改善。","authors":"Seon Woo Kim, Hyeon Joo Lee, Naye Choi, Ee-Kyung Kim, Jung Min Ko","doi":"10.1002/mgg3.70002","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Holocarboxylase synthetase deficiency (HLCS deficiency, OMIM #253270) is an exceedingly rare metabolic disorder resulting in multiple carboxylase deficiencies owing to impaired biotin cycle. Clinical manifestations include severe metabolic acidosis, hyperammonemia, tachypnea, skin rash, alopecia, feeding problems, hypotonia, developmental delay, seizures, and, in severe cases, death.</p><p><strong>Methods and results: </strong>An 8-day-old female neonate presented with severe lactic acidosis, necessitating sedation and mechanical ventilation. Despite receiving supportive care, no evident clinical improvement was observed, accompanied by the onset of generalized ichthyosis. Genetic analysis of actionable metabolic disorders revealed compound heterozygous variants of HLCS (NM_000411.8), specifically c.[710T>C (p.Leu237Pro)]; [1544G>A (p.Ser515Asn)], prompting the initiation of biotin mega-dose therapy (10 mg/day). Remarkably, dramatic clinical improvement in lactic acidosis was observed the day after initiating biotin administration, leading to the discontinuation of mechanical ventilation within 6 days. The patient remained in stable condition during follow-up, exhibiting normal growth and development along with consistently stable laboratory findings up to 18 months of age.</p><p><strong>Conclusion: </strong>Our case highlights the significance of early genetic testing in neonates with unexplained metabolic disorders to enable timely diagnosis and therapy initiation. Biotin therapy has demonstrated remarkable efficacy in improving the clinical condition of patients with HLCS deficiency, leading to favorable outcomes.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"12 8","pages":"e70002"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350837/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dramatic Clinical Improvement With Biotin Mega-Dose Therapy in a Neonate With Holocarboxylase Synthetase Deficiency.\",\"authors\":\"Seon Woo Kim, Hyeon Joo Lee, Naye Choi, Ee-Kyung Kim, Jung Min Ko\",\"doi\":\"10.1002/mgg3.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Holocarboxylase synthetase deficiency (HLCS deficiency, OMIM #253270) is an exceedingly rare metabolic disorder resulting in multiple carboxylase deficiencies owing to impaired biotin cycle. Clinical manifestations include severe metabolic acidosis, hyperammonemia, tachypnea, skin rash, alopecia, feeding problems, hypotonia, developmental delay, seizures, and, in severe cases, death.</p><p><strong>Methods and results: </strong>An 8-day-old female neonate presented with severe lactic acidosis, necessitating sedation and mechanical ventilation. Despite receiving supportive care, no evident clinical improvement was observed, accompanied by the onset of generalized ichthyosis. Genetic analysis of actionable metabolic disorders revealed compound heterozygous variants of HLCS (NM_000411.8), specifically c.[710T>C (p.Leu237Pro)]; [1544G>A (p.Ser515Asn)], prompting the initiation of biotin mega-dose therapy (10 mg/day). Remarkably, dramatic clinical improvement in lactic acidosis was observed the day after initiating biotin administration, leading to the discontinuation of mechanical ventilation within 6 days. The patient remained in stable condition during follow-up, exhibiting normal growth and development along with consistently stable laboratory findings up to 18 months of age.</p><p><strong>Conclusion: </strong>Our case highlights the significance of early genetic testing in neonates with unexplained metabolic disorders to enable timely diagnosis and therapy initiation. Biotin therapy has demonstrated remarkable efficacy in improving the clinical condition of patients with HLCS deficiency, leading to favorable outcomes.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":\"12 8\",\"pages\":\"e70002\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.70002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Dramatic Clinical Improvement With Biotin Mega-Dose Therapy in a Neonate With Holocarboxylase Synthetase Deficiency.
Introduction: Holocarboxylase synthetase deficiency (HLCS deficiency, OMIM #253270) is an exceedingly rare metabolic disorder resulting in multiple carboxylase deficiencies owing to impaired biotin cycle. Clinical manifestations include severe metabolic acidosis, hyperammonemia, tachypnea, skin rash, alopecia, feeding problems, hypotonia, developmental delay, seizures, and, in severe cases, death.
Methods and results: An 8-day-old female neonate presented with severe lactic acidosis, necessitating sedation and mechanical ventilation. Despite receiving supportive care, no evident clinical improvement was observed, accompanied by the onset of generalized ichthyosis. Genetic analysis of actionable metabolic disorders revealed compound heterozygous variants of HLCS (NM_000411.8), specifically c.[710T>C (p.Leu237Pro)]; [1544G>A (p.Ser515Asn)], prompting the initiation of biotin mega-dose therapy (10 mg/day). Remarkably, dramatic clinical improvement in lactic acidosis was observed the day after initiating biotin administration, leading to the discontinuation of mechanical ventilation within 6 days. The patient remained in stable condition during follow-up, exhibiting normal growth and development along with consistently stable laboratory findings up to 18 months of age.
Conclusion: Our case highlights the significance of early genetic testing in neonates with unexplained metabolic disorders to enable timely diagnosis and therapy initiation. Biotin therapy has demonstrated remarkable efficacy in improving the clinical condition of patients with HLCS deficiency, leading to favorable outcomes.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.