Hongsheng Jiang , Shaopeng Li , Xinzhong Chen , Zhiyang Li
{"title":"通过测量分段力量化桥面缓冲升力的气动导纳和跨度相干函数","authors":"Hongsheng Jiang , Shaopeng Li , Xinzhong Chen , Zhiyang Li","doi":"10.1016/j.jweia.2024.105872","DOIUrl":null,"url":null,"abstract":"<div><p>The assessment of buffeting response of long span bridges relies significantly on the aerodynamic admittance and spanwise coherence functions of buffeting forces acting on bridge decks. This study presents a novel approach to derive admittance and coherence functions of buffeting lift on bridge decks, utilizing wind tunnel measurement of forces on spanwise distributed segments. The approach is developed by establishing connections of the power spectrum and coherence function of segmental lift with the admittance and coherence functions of strip lift. This study also explores the direct estimation of the generalized buffeting forces on long span bridges from the segmental force, eliminating the need of extracting admittance and coherence functions of strip force. The methodology is firstly validated for a thin plate with theoretical force information, follow by its application to a twin-box bridge deck using wind tunnel data. The investigation assesses the influence of a pre-assumed coherence model on the identified admittance and coherence functions and its consequential impact on the generalized buffeting forces of long span bridges. The proposed approach offers a practical and efficient means to quantify buffeting forces acting on bridge decks with intricate configurations, such as truss sections, where surface pressure measurement may pose challenges.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"253 ","pages":"Article 105872"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the aerodynamic admittance and spanwise coherence functions of buffeting lift for bridge decks through the measurement of segmental forces\",\"authors\":\"Hongsheng Jiang , Shaopeng Li , Xinzhong Chen , Zhiyang Li\",\"doi\":\"10.1016/j.jweia.2024.105872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The assessment of buffeting response of long span bridges relies significantly on the aerodynamic admittance and spanwise coherence functions of buffeting forces acting on bridge decks. This study presents a novel approach to derive admittance and coherence functions of buffeting lift on bridge decks, utilizing wind tunnel measurement of forces on spanwise distributed segments. The approach is developed by establishing connections of the power spectrum and coherence function of segmental lift with the admittance and coherence functions of strip lift. This study also explores the direct estimation of the generalized buffeting forces on long span bridges from the segmental force, eliminating the need of extracting admittance and coherence functions of strip force. The methodology is firstly validated for a thin plate with theoretical force information, follow by its application to a twin-box bridge deck using wind tunnel data. The investigation assesses the influence of a pre-assumed coherence model on the identified admittance and coherence functions and its consequential impact on the generalized buffeting forces of long span bridges. The proposed approach offers a practical and efficient means to quantify buffeting forces acting on bridge decks with intricate configurations, such as truss sections, where surface pressure measurement may pose challenges.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"253 \",\"pages\":\"Article 105872\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002356\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002356","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Quantifying the aerodynamic admittance and spanwise coherence functions of buffeting lift for bridge decks through the measurement of segmental forces
The assessment of buffeting response of long span bridges relies significantly on the aerodynamic admittance and spanwise coherence functions of buffeting forces acting on bridge decks. This study presents a novel approach to derive admittance and coherence functions of buffeting lift on bridge decks, utilizing wind tunnel measurement of forces on spanwise distributed segments. The approach is developed by establishing connections of the power spectrum and coherence function of segmental lift with the admittance and coherence functions of strip lift. This study also explores the direct estimation of the generalized buffeting forces on long span bridges from the segmental force, eliminating the need of extracting admittance and coherence functions of strip force. The methodology is firstly validated for a thin plate with theoretical force information, follow by its application to a twin-box bridge deck using wind tunnel data. The investigation assesses the influence of a pre-assumed coherence model on the identified admittance and coherence functions and its consequential impact on the generalized buffeting forces of long span bridges. The proposed approach offers a practical and efficient means to quantify buffeting forces acting on bridge decks with intricate configurations, such as truss sections, where surface pressure measurement may pose challenges.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.