{"title":"湍流内部流动的平均温度曲线","authors":"Sergio Pirozzoli , Davide Modesti","doi":"10.1016/j.ijheatfluidflow.2024.109544","DOIUrl":null,"url":null,"abstract":"<div><p>We derive explicit formulas for the mean profiles of temperature (modeled as a passive scalar) in forced turbulent convection, as a function of the Reynolds and Prandtl numbers. The derivation leverages on the observed universality of the inner-layer thermal eddy diffusivity with respect to Reynolds and Prandtl number variations and across different flows, and on universality of the passive scalar defect in the core flow. Matching of the inner- and outer-layer expression yields a smooth compound mean temperature profile. We find excellent agreement of the analytical profile with data from direct numerical simulations of pipe and channel flows under various thermal forcing conditions, and over a wide range of Reynolds and Prandtl numbers.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109544"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142727X24002698/pdfft?md5=33acd63457aa83ce6f647e6b12509f69&pid=1-s2.0-S0142727X24002698-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mean temperature profiles in turbulent internal flows\",\"authors\":\"Sergio Pirozzoli , Davide Modesti\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We derive explicit formulas for the mean profiles of temperature (modeled as a passive scalar) in forced turbulent convection, as a function of the Reynolds and Prandtl numbers. The derivation leverages on the observed universality of the inner-layer thermal eddy diffusivity with respect to Reynolds and Prandtl number variations and across different flows, and on universality of the passive scalar defect in the core flow. Matching of the inner- and outer-layer expression yields a smooth compound mean temperature profile. We find excellent agreement of the analytical profile with data from direct numerical simulations of pipe and channel flows under various thermal forcing conditions, and over a wide range of Reynolds and Prandtl numbers.</p></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"109 \",\"pages\":\"Article 109544\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002698/pdfft?md5=33acd63457aa83ce6f647e6b12509f69&pid=1-s2.0-S0142727X24002698-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002698\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002698","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Mean temperature profiles in turbulent internal flows
We derive explicit formulas for the mean profiles of temperature (modeled as a passive scalar) in forced turbulent convection, as a function of the Reynolds and Prandtl numbers. The derivation leverages on the observed universality of the inner-layer thermal eddy diffusivity with respect to Reynolds and Prandtl number variations and across different flows, and on universality of the passive scalar defect in the core flow. Matching of the inner- and outer-layer expression yields a smooth compound mean temperature profile. We find excellent agreement of the analytical profile with data from direct numerical simulations of pipe and channel flows under various thermal forcing conditions, and over a wide range of Reynolds and Prandtl numbers.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.