Aman Kumar Jain , Fabian Denner , Berend van Wachem
{"title":"在加热基底上蒸发的无柄液滴中颗粒的分散","authors":"Aman Kumar Jain , Fabian Denner , Berend van Wachem","doi":"10.1016/j.ijmultiphaseflow.2024.104956","DOIUrl":null,"url":null,"abstract":"<div><p>A coupled volume-of-fluid (VOF) and discrete element model (DEM) is developed and used to study the dispersion of particles in an evaporating pinned sessile droplet on a heated substrate. Fully resolved simulations of evaporating droplets are performed to study the effects of substrate temperature and the Marangoni stresses to study the fluid flow and temperature distribution within the droplet. The fluid flow inside the evaporating droplets is used to predict the behavior of particles, studying the effect of relative particle density and the aforementioned effects on the particle dispersion within the droplet. This study shows that the presence of Marangoni stresses significantly affects the flow and temperature distribution inside the droplet, which, in turn, influences the dispersion of particles in the droplet. The fluid velocity induced by the Marangoni stresses is nearly two orders of magnitude larger than the velocity generated by capillary flow as a result of evaporation, promoting a strong convective mixing within the droplet, while working to equilibrate the temperature distribution at the interface. In the absence of Marangoni stresses, the dispersion of particles is governed by the competing effects of adsorption by the downward-moving interface as a result of evaporation, and particle sedimentation under the influence of gravity. However, both these effects become less dominant in the presence of a flow induced by the Marangoni stresses, causing the particles to initially move toward the apex of the droplet along the interface and, subsequently, toward a stagnation point on the interface.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"180 ","pages":"Article 104956"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301932224002337/pdfft?md5=a4ea75ac40a3e2eb41ba9fcc769af377&pid=1-s2.0-S0301932224002337-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dispersion of particles in a sessile droplet evaporating on a heated substrate\",\"authors\":\"Aman Kumar Jain , Fabian Denner , Berend van Wachem\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A coupled volume-of-fluid (VOF) and discrete element model (DEM) is developed and used to study the dispersion of particles in an evaporating pinned sessile droplet on a heated substrate. Fully resolved simulations of evaporating droplets are performed to study the effects of substrate temperature and the Marangoni stresses to study the fluid flow and temperature distribution within the droplet. The fluid flow inside the evaporating droplets is used to predict the behavior of particles, studying the effect of relative particle density and the aforementioned effects on the particle dispersion within the droplet. This study shows that the presence of Marangoni stresses significantly affects the flow and temperature distribution inside the droplet, which, in turn, influences the dispersion of particles in the droplet. The fluid velocity induced by the Marangoni stresses is nearly two orders of magnitude larger than the velocity generated by capillary flow as a result of evaporation, promoting a strong convective mixing within the droplet, while working to equilibrate the temperature distribution at the interface. In the absence of Marangoni stresses, the dispersion of particles is governed by the competing effects of adsorption by the downward-moving interface as a result of evaporation, and particle sedimentation under the influence of gravity. However, both these effects become less dominant in the presence of a flow induced by the Marangoni stresses, causing the particles to initially move toward the apex of the droplet along the interface and, subsequently, toward a stagnation point on the interface.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"180 \",\"pages\":\"Article 104956\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002337/pdfft?md5=a4ea75ac40a3e2eb41ba9fcc769af377&pid=1-s2.0-S0301932224002337-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002337\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002337","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Dispersion of particles in a sessile droplet evaporating on a heated substrate
A coupled volume-of-fluid (VOF) and discrete element model (DEM) is developed and used to study the dispersion of particles in an evaporating pinned sessile droplet on a heated substrate. Fully resolved simulations of evaporating droplets are performed to study the effects of substrate temperature and the Marangoni stresses to study the fluid flow and temperature distribution within the droplet. The fluid flow inside the evaporating droplets is used to predict the behavior of particles, studying the effect of relative particle density and the aforementioned effects on the particle dispersion within the droplet. This study shows that the presence of Marangoni stresses significantly affects the flow and temperature distribution inside the droplet, which, in turn, influences the dispersion of particles in the droplet. The fluid velocity induced by the Marangoni stresses is nearly two orders of magnitude larger than the velocity generated by capillary flow as a result of evaporation, promoting a strong convective mixing within the droplet, while working to equilibrate the temperature distribution at the interface. In the absence of Marangoni stresses, the dispersion of particles is governed by the competing effects of adsorption by the downward-moving interface as a result of evaporation, and particle sedimentation under the influence of gravity. However, both these effects become less dominant in the presence of a flow induced by the Marangoni stresses, causing the particles to initially move toward the apex of the droplet along the interface and, subsequently, toward a stagnation point on the interface.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.