板开腔耦合系统的快速振动声学建模方法

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-08-20 DOI:10.1016/j.ijmecsci.2024.109666
{"title":"板开腔耦合系统的快速振动声学建模方法","authors":"","doi":"10.1016/j.ijmecsci.2024.109666","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a fast Chebyshev-Ritz method for vibro-acoustic analytical modeling of plate-open cavity coupled systems is developed for the first time. Based on the Chebyshev spectral method and the Rayleigh-Ritz solution procedure, the vibro-acoustic model of the open cavity coupled with a rectangular plate is established. The exterior acoustic field of the open cavity is expressed by the Rayleigh integral. Additionally, the Rayleigh integral is divided into a frequency-independent singular integral and a frequency-dependent non-singular integral, accelerating the calculation process. Furthermore, the Gauss-Chebyshev-Lobato sampling method is first developed for the plate-open cavity coupling model. By converting the integrals into tensor products, the method avoids complex quadruple integrals, increasing the efficiency of the entire integral operation. The vibration and acoustic responses from the proposed method agree well with existing literature and FEM analysis results, demonstrating the convergence and correctness of the current methodology. The mechanism of cavity depth on vibro-acoustic features of plate-open cavity systems is studied, which is less focused in the published literature. Other factors governing the plate-open cavity coupled model encompassed boundary conditions, fluid mediums, and plate thickness are fully examined. The results provide a theoretical foundation for the design and future research of plate-open cavity structures.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast vibro-acoustic modeling method of plate-open cavity coupled systems\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmecsci.2024.109666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a fast Chebyshev-Ritz method for vibro-acoustic analytical modeling of plate-open cavity coupled systems is developed for the first time. Based on the Chebyshev spectral method and the Rayleigh-Ritz solution procedure, the vibro-acoustic model of the open cavity coupled with a rectangular plate is established. The exterior acoustic field of the open cavity is expressed by the Rayleigh integral. Additionally, the Rayleigh integral is divided into a frequency-independent singular integral and a frequency-dependent non-singular integral, accelerating the calculation process. Furthermore, the Gauss-Chebyshev-Lobato sampling method is first developed for the plate-open cavity coupling model. By converting the integrals into tensor products, the method avoids complex quadruple integrals, increasing the efficiency of the entire integral operation. The vibration and acoustic responses from the proposed method agree well with existing literature and FEM analysis results, demonstrating the convergence and correctness of the current methodology. The mechanism of cavity depth on vibro-acoustic features of plate-open cavity systems is studied, which is less focused in the published literature. Other factors governing the plate-open cavity coupled model encompassed boundary conditions, fluid mediums, and plate thickness are fully examined. The results provide a theoretical foundation for the design and future research of plate-open cavity structures.</p></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007070\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007070","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文首次提出了一种用于板-开腔耦合系统振动声学分析建模的快速切比雪夫-里兹方法。基于切比雪夫频谱法和 Rayleigh-Ritz 求解程序,建立了开放式空腔与矩形板耦合的振动声学模型。开放空腔的外部声场由瑞利积分表示。此外,瑞利积分被分为与频率无关的奇异积分和与频率有关的非奇异积分,从而加快了计算过程。此外,针对板-开腔耦合模型,首次开发了高斯-切比雪夫-洛巴托采样方法。通过将积分转换为张量乘积,该方法避免了复杂的四重积分,提高了整个积分运算的效率。该方法得出的振动和声学响应与现有文献和有限元分析结果一致,证明了当前方法的收敛性和正确性。研究了空腔深度对板开式空腔系统振动声学特征的影响机制,这在已发表的文献中关注较少。此外,还全面研究了制约板-开腔耦合模型的其他因素,包括边界条件、流体介质和板厚度。研究结果为板开腔结构的设计和未来研究提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast vibro-acoustic modeling method of plate-open cavity coupled systems

In this paper, a fast Chebyshev-Ritz method for vibro-acoustic analytical modeling of plate-open cavity coupled systems is developed for the first time. Based on the Chebyshev spectral method and the Rayleigh-Ritz solution procedure, the vibro-acoustic model of the open cavity coupled with a rectangular plate is established. The exterior acoustic field of the open cavity is expressed by the Rayleigh integral. Additionally, the Rayleigh integral is divided into a frequency-independent singular integral and a frequency-dependent non-singular integral, accelerating the calculation process. Furthermore, the Gauss-Chebyshev-Lobato sampling method is first developed for the plate-open cavity coupling model. By converting the integrals into tensor products, the method avoids complex quadruple integrals, increasing the efficiency of the entire integral operation. The vibration and acoustic responses from the proposed method agree well with existing literature and FEM analysis results, demonstrating the convergence and correctness of the current methodology. The mechanism of cavity depth on vibro-acoustic features of plate-open cavity systems is studied, which is less focused in the published literature. Other factors governing the plate-open cavity coupled model encompassed boundary conditions, fluid mediums, and plate thickness are fully examined. The results provide a theoretical foundation for the design and future research of plate-open cavity structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1