土工合成材料加固桩支撑路堤中三维同心椭圆土拱起的分析模型

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-08-27 DOI:10.1016/j.geotexmem.2024.08.005
Rong Sun , Xin Jiang , Lei Zhang , Canyang Cui , Zhengxian Li , Yanjun Qiu
{"title":"土工合成材料加固桩支撑路堤中三维同心椭圆土拱起的分析模型","authors":"Rong Sun ,&nbsp;Xin Jiang ,&nbsp;Lei Zhang ,&nbsp;Canyang Cui ,&nbsp;Zhengxian Li ,&nbsp;Yanjun Qiu","doi":"10.1016/j.geotexmem.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>The geosynthetic-reinforced pile-supported (GRPS) embankment is an effective method for improving soft ground, widely adopted in engineering applications. In this paper, a concentric ellipsoidal soil arching model was proposed to describe the stress distribution within the GRPS embankment. An analytical solution for soil arching efficacy was derived by solving the loads acting on the pile caps and geosynthetics under piles arranged in a squared pattern. Subsequently, finite difference models were established to verify the accuracy of the derived analytical solution. Meanwhile, four field tests were introduced to validate the analytical model. Finally, parametric studies were conducted on the concentric ellipsoidal soil arching model, considering parameters such as the embankment height, the pile spacing, the pile cap width, the unit weight, and the friction angle of fill soil.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 6","pages":"Pages 1222-1239"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical model of three-dimensional concentric ellipsoidal soil arching in geosynthetic-reinforced pile-supported embankments\",\"authors\":\"Rong Sun ,&nbsp;Xin Jiang ,&nbsp;Lei Zhang ,&nbsp;Canyang Cui ,&nbsp;Zhengxian Li ,&nbsp;Yanjun Qiu\",\"doi\":\"10.1016/j.geotexmem.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The geosynthetic-reinforced pile-supported (GRPS) embankment is an effective method for improving soft ground, widely adopted in engineering applications. In this paper, a concentric ellipsoidal soil arching model was proposed to describe the stress distribution within the GRPS embankment. An analytical solution for soil arching efficacy was derived by solving the loads acting on the pile caps and geosynthetics under piles arranged in a squared pattern. Subsequently, finite difference models were established to verify the accuracy of the derived analytical solution. Meanwhile, four field tests were introduced to validate the analytical model. Finally, parametric studies were conducted on the concentric ellipsoidal soil arching model, considering parameters such as the embankment height, the pile spacing, the pile cap width, the unit weight, and the friction angle of fill soil.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 6\",\"pages\":\"Pages 1222-1239\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000931\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

土工合成材料加固桩支撑路堤(GRPS)是改善软土地基的一种有效方法,在工程应用中被广泛采用。本文提出了一种同心椭圆土拱模型来描述土工合成材料桩支撑路堤内的应力分布。通过求解方形排列的桩下桩帽和土工合成材料上的荷载,得出了土拱效应的解析解。随后,建立了有限差分模型来验证推导出的分析解决方案的准确性。同时,还引入了四个现场试验来验证分析模型。最后,考虑到路堤高度、桩间距、桩帽宽度、单位重量和填土摩擦角等参数,对同心椭圆土拱模型进行了参数研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical model of three-dimensional concentric ellipsoidal soil arching in geosynthetic-reinforced pile-supported embankments

The geosynthetic-reinforced pile-supported (GRPS) embankment is an effective method for improving soft ground, widely adopted in engineering applications. In this paper, a concentric ellipsoidal soil arching model was proposed to describe the stress distribution within the GRPS embankment. An analytical solution for soil arching efficacy was derived by solving the loads acting on the pile caps and geosynthetics under piles arranged in a squared pattern. Subsequently, finite difference models were established to verify the accuracy of the derived analytical solution. Meanwhile, four field tests were introduced to validate the analytical model. Finally, parametric studies were conducted on the concentric ellipsoidal soil arching model, considering parameters such as the embankment height, the pile spacing, the pile cap width, the unit weight, and the friction angle of fill soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Influence of perforation characteristics and geotextile envelopes on the drain pipe An approximate solution of consolidation for double-layered ground with different smear radii by vertical drains Long-term performance of polyethylene geomembranes to contain brine Field behavior of a GRS bridge approach retaining wall on highly compressible foundation soils A model for predicting permeability of geotextile envelope for subsurface drainage after combined clogging in arid areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1