用于 DRAM 应用的 FeRAM 位单元设计空间探索

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-12 DOI:10.1109/TED.2024.3435630
Hyungrock Oh;Yang Xiang;Fernando Garcia Redondo;Mohit Kumar Gupta;Manu Perumkunnil;Marie Garcia Bardon;Amit Dhiman;Sathisha Nanjunde Gowda;Amey Walke;Andrea Fantini;Farrukh Yasin;Gouri Sankar Kar;Geert Hellings;Wim Dehaene
{"title":"用于 DRAM 应用的 FeRAM 位单元设计空间探索","authors":"Hyungrock Oh;Yang Xiang;Fernando Garcia Redondo;Mohit Kumar Gupta;Manu Perumkunnil;Marie Garcia Bardon;Amit Dhiman;Sathisha Nanjunde Gowda;Amey Walke;Andrea Fantini;Farrukh Yasin;Gouri Sankar Kar;Geert Hellings;Wim Dehaene","doi":"10.1109/TED.2024.3435630","DOIUrl":null,"url":null,"abstract":"HfOx-based ferroelectric random access memories (FeRAMs) have been proposed as a promising candidate to further dynamic random access memory (DRAM) scaling. This article presents a bitcell design space exploration of HfZrOx-based FeRAM based on a 2T1C testbench representative of a 64-kb 1T1C subarray at 40-nm CMOS technology. We first explore the impact of ferroelectric capacitor (FeCAP) sizing on the read sensing margin (SM) and speed with eight different blocks in the subarray, supported by a hardware-calibrated FeCAP compact model. We identify the capacitance ratio (\n<inline-formula> <tex-math>${C} _{\\text {R}}$ </tex-math></inline-formula>\n) between the bitline parasitic capacitance (\n<inline-formula> <tex-math>${C} _{\\text {BL}}$ </tex-math></inline-formula>\n) and the FeCAP capacitance (\n<inline-formula> <tex-math>${C} _{\\text {FE}}$ </tex-math></inline-formula>\n) as the critical design parameter for bitcell SM optimization, with a maximum \n<inline-formula> <tex-math>${C} _{\\text {R}}$ </tex-math></inline-formula>\n of 41 permitted for the given FeCAP technology. Furthermore, we investigate the impact of FeCAP sizing on ferro-grain granularity (FGG)-induced variability. Our findings clarify that SM variability worsens with increasing FeCAP size but does not significantly affect the readability overall. Additionally, we examine the consequences of FeCAP sizing on disturbance effects during write operations, concluding that larger FeCAPs help mitigate write disturbances by reducing voltage transfer to half-selected (HS) cells.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Space Exploration of FeRAM Bit Cell for DRAM Application\",\"authors\":\"Hyungrock Oh;Yang Xiang;Fernando Garcia Redondo;Mohit Kumar Gupta;Manu Perumkunnil;Marie Garcia Bardon;Amit Dhiman;Sathisha Nanjunde Gowda;Amey Walke;Andrea Fantini;Farrukh Yasin;Gouri Sankar Kar;Geert Hellings;Wim Dehaene\",\"doi\":\"10.1109/TED.2024.3435630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HfOx-based ferroelectric random access memories (FeRAMs) have been proposed as a promising candidate to further dynamic random access memory (DRAM) scaling. This article presents a bitcell design space exploration of HfZrOx-based FeRAM based on a 2T1C testbench representative of a 64-kb 1T1C subarray at 40-nm CMOS technology. We first explore the impact of ferroelectric capacitor (FeCAP) sizing on the read sensing margin (SM) and speed with eight different blocks in the subarray, supported by a hardware-calibrated FeCAP compact model. We identify the capacitance ratio (\\n<inline-formula> <tex-math>${C} _{\\\\text {R}}$ </tex-math></inline-formula>\\n) between the bitline parasitic capacitance (\\n<inline-formula> <tex-math>${C} _{\\\\text {BL}}$ </tex-math></inline-formula>\\n) and the FeCAP capacitance (\\n<inline-formula> <tex-math>${C} _{\\\\text {FE}}$ </tex-math></inline-formula>\\n) as the critical design parameter for bitcell SM optimization, with a maximum \\n<inline-formula> <tex-math>${C} _{\\\\text {R}}$ </tex-math></inline-formula>\\n of 41 permitted for the given FeCAP technology. Furthermore, we investigate the impact of FeCAP sizing on ferro-grain granularity (FGG)-induced variability. Our findings clarify that SM variability worsens with increasing FeCAP size but does not significantly affect the readability overall. Additionally, we examine the consequences of FeCAP sizing on disturbance effects during write operations, concluding that larger FeCAPs help mitigate write disturbances by reducing voltage transfer to half-selected (HS) cells.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634300/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10634300/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于氧化铪的铁电随机存取存储器(FeRAM)被认为是进一步扩展动态随机存取存储器(DRAM)的理想候选器件。本文介绍了基于 HfZrOx 的铁电随机存取存储器的位元设计空间探索,其基础是 40 纳米 CMOS 技术下代表 64-kb 1T1C 子阵列的 2T1C 测试平台。在硬件校准的 FeCAP 紧凑型模型的支持下,我们首先探讨了铁电电容器 (FeCAP) 大小对子阵列中八个不同区块的读取感应裕量 (SM) 和速度的影响。我们将位线寄生电容(${C} _{\text {BL}}$)与 FeCAP 电容(${C} _{\text {FE}}$)之间的电容比(${C} _{\text {R}}$)确定为优化位元组 SM 的关键设计参数,最大值为${C} _{\text {FE}}$。对于给定的 FeCAP 技术,允许的最大 ${C} _{\text {R}}$ 为 41。此外,我们还研究了 FeCAP 大小对铁晶粒度 (FGG) 引起的变异性的影响。我们的研究结果表明,SM 变异会随着 FeCAP 尺寸的增大而恶化,但不会对整体可读性产生显著影响。此外,我们还研究了铁磁晶粒尺寸对写入操作期间干扰效应的影响,得出的结论是,较大的铁磁晶粒尺寸有助于减少半选 (HS) 单元的电压传递,从而减轻写入干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Space Exploration of FeRAM Bit Cell for DRAM Application
HfOx-based ferroelectric random access memories (FeRAMs) have been proposed as a promising candidate to further dynamic random access memory (DRAM) scaling. This article presents a bitcell design space exploration of HfZrOx-based FeRAM based on a 2T1C testbench representative of a 64-kb 1T1C subarray at 40-nm CMOS technology. We first explore the impact of ferroelectric capacitor (FeCAP) sizing on the read sensing margin (SM) and speed with eight different blocks in the subarray, supported by a hardware-calibrated FeCAP compact model. We identify the capacitance ratio ( ${C} _{\text {R}}$ ) between the bitline parasitic capacitance ( ${C} _{\text {BL}}$ ) and the FeCAP capacitance ( ${C} _{\text {FE}}$ ) as the critical design parameter for bitcell SM optimization, with a maximum ${C} _{\text {R}}$ of 41 permitted for the given FeCAP technology. Furthermore, we investigate the impact of FeCAP sizing on ferro-grain granularity (FGG)-induced variability. Our findings clarify that SM variability worsens with increasing FeCAP size but does not significantly affect the readability overall. Additionally, we examine the consequences of FeCAP sizing on disturbance effects during write operations, concluding that larger FeCAPs help mitigate write disturbances by reducing voltage transfer to half-selected (HS) cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1