基于场的三维对比源反演法离散化应用于脑卒中微波成像

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-21 DOI:10.1109/JERM.2024.3414196
Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana
{"title":"基于场的三维对比源反演法离散化应用于脑卒中微波成像","authors":"Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana","doi":"10.1109/JERM.2024.3414196","DOIUrl":null,"url":null,"abstract":"The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination with a finite element method solver for the reconstruction of the dielectric properties' distribution in the head with the aim to diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties' reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain stroke scenarios.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"290-297"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging\",\"authors\":\"Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana\",\"doi\":\"10.1109/JERM.2024.3414196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination with a finite element method solver for the reconstruction of the dielectric properties' distribution in the head with the aim to diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties' reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain stroke scenarios.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"8 3\",\"pages\":\"290-297\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10568445/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10568445/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对比源反演法是一种迭代非线性算法,在本文中,它与有限元法求解器相结合,用于重建头部介电特性分布,目的是诊断脑中风。在这里,我们通过一种新颖的基于场的离散化方法对所涉及的造影剂源变量进行了离散化处理,这种方法允许变量的线性变化,从而对其进行更精确的描述,因此最终的介电特性重建更接近预期的情况。此外,我们还提出了一种基于截断奇异值分解技术的计算成像算法初始猜测的新方法,这种方法在测量数据有噪声的情况下显得更加有效。最后,我们将所开发的算法应用于使用微波成像系统测量的数据集,以重建脑中风的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging
The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination with a finite element method solver for the reconstruction of the dielectric properties' distribution in the head with the aim to diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties' reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain stroke scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1