Annisa Sarah;Gianfranco Nencioni;Md Muhidul Islam Khan
{"title":"基于 DRL 的具有可用性意识的 MEC 服务迁移","authors":"Annisa Sarah;Gianfranco Nencioni;Md Muhidul Islam Khan","doi":"10.1109/OJCOMS.2024.3443514","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) allows a mobile user to access a service on a computing device called MEC Host (MEH), enabling lower latency by running the service closer to the users. When the user moves away from the serving MEH, the latency increases, which may cause a disruption of the user experience and of the service continuity. Moreover, the serving MEH may also fail, making the service unavailable. We propose a solution to a service migration problem that maximizes the MEC service availability by jointly deciding (i) migration timing and (ii) target MEH based on latency constraint, resource constraint, and availability status of a MEH. We solve the problem by using Deep Reinforcement Learning (DRL). The experiment shows that our proposed solution can successfully maintain a high service availability (more than 94%) in the presence of different failure probabilities, while another algorithm gives unstable service availability.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10636784","citationCount":"0","resultStr":"{\"title\":\"DRL-Based Availability-Aware Migration of a MEC Service\",\"authors\":\"Annisa Sarah;Gianfranco Nencioni;Md Muhidul Islam Khan\",\"doi\":\"10.1109/OJCOMS.2024.3443514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access Edge Computing (MEC) allows a mobile user to access a service on a computing device called MEC Host (MEH), enabling lower latency by running the service closer to the users. When the user moves away from the serving MEH, the latency increases, which may cause a disruption of the user experience and of the service continuity. Moreover, the serving MEH may also fail, making the service unavailable. We propose a solution to a service migration problem that maximizes the MEC service availability by jointly deciding (i) migration timing and (ii) target MEH based on latency constraint, resource constraint, and availability status of a MEH. We solve the problem by using Deep Reinforcement Learning (DRL). The experiment shows that our proposed solution can successfully maintain a high service availability (more than 94%) in the presence of different failure probabilities, while another algorithm gives unstable service availability.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10636784\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636784/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10636784/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
DRL-Based Availability-Aware Migration of a MEC Service
Multi-access Edge Computing (MEC) allows a mobile user to access a service on a computing device called MEC Host (MEH), enabling lower latency by running the service closer to the users. When the user moves away from the serving MEH, the latency increases, which may cause a disruption of the user experience and of the service continuity. Moreover, the serving MEH may also fail, making the service unavailable. We propose a solution to a service migration problem that maximizes the MEC service availability by jointly deciding (i) migration timing and (ii) target MEH based on latency constraint, resource constraint, and availability status of a MEH. We solve the problem by using Deep Reinforcement Learning (DRL). The experiment shows that our proposed solution can successfully maintain a high service availability (more than 94%) in the presence of different failure probabilities, while another algorithm gives unstable service availability.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.