Prof. Nao Tsunoji, Misae Onishi, Sou Sonoda, Dr. Takeshi Ohnishi, Prof. Masaru Ogura, Prof. Zen Maeno, Prof. Takashi Toyao, Prof. Ken-ichi Shimizu
{"title":"封面:应用于氨选择性催化还原氮氧化物的 CHA 沸石的合成-结构-催化关系(ChemCatChem 16/2024)","authors":"Prof. Nao Tsunoji, Misae Onishi, Sou Sonoda, Dr. Takeshi Ohnishi, Prof. Masaru Ogura, Prof. Zen Maeno, Prof. Takashi Toyao, Prof. Ken-ichi Shimizu","doi":"10.1002/cctc.202481601","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> represents the three formation routes of zeolite from different starting materials. Zeolites are crucial industrial catalysts, whereas their crystallization mechanism is still unclear, limiting their rational functional design. Nao Tsunoji and co-workers present the synthesis–structure–catalysis relation of CHA zeolite to get fundamental knowledge for intentionally controlling the function of zeolites. Different starting materials provide three different formation pathways to form CHA zeolites with different properties in the presence of tetraethylammonium hydroxide as an inexpensive organic structure directing agent. The knowledge related to origin of the catalytic durability was obtained based on their structural character, crystallization mechanism, and exhaust gas purification ability. More information can be found in the Research Article by Nao Tsunoji and co-workers (DOI: 10.1002/cctc.202400459).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 16","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481601","citationCount":"0","resultStr":"{\"title\":\"Front Cover: Synthesis-Structure-Catalysis Relations in CHA Zeolites Applied for Selective Catalytic Reduction of NOx with Ammonia (ChemCatChem 16/2024)\",\"authors\":\"Prof. Nao Tsunoji, Misae Onishi, Sou Sonoda, Dr. Takeshi Ohnishi, Prof. Masaru Ogura, Prof. Zen Maeno, Prof. Takashi Toyao, Prof. Ken-ichi Shimizu\",\"doi\":\"10.1002/cctc.202481601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Front Cover</b> represents the three formation routes of zeolite from different starting materials. Zeolites are crucial industrial catalysts, whereas their crystallization mechanism is still unclear, limiting their rational functional design. Nao Tsunoji and co-workers present the synthesis–structure–catalysis relation of CHA zeolite to get fundamental knowledge for intentionally controlling the function of zeolites. Different starting materials provide three different formation pathways to form CHA zeolites with different properties in the presence of tetraethylammonium hydroxide as an inexpensive organic structure directing agent. The knowledge related to origin of the catalytic durability was obtained based on their structural character, crystallization mechanism, and exhaust gas purification ability. More information can be found in the Research Article by Nao Tsunoji and co-workers (DOI: 10.1002/cctc.202400459).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"16 16\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481601\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202481601\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202481601","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
封面展示了不同起始材料形成沸石的三种途径。沸石是重要的工业催化剂,但其结晶机理尚不清楚,限制了其合理的功能设计。Nao Tsunoji 及其合作者介绍了 CHA 沸石的合成-结构-催化关系,为有意控制沸石的功能提供了基础知识。不同的起始材料提供了三种不同的形成途径,在作为廉价有机结构引导剂的四乙基氢氧化铵存在下,形成了具有不同性质的 CHA 沸石。根据它们的结构特征、结晶机理和废气净化能力,获得了与催化耐久性起源有关的知识。更多信息,请参阅 Nao Tsunoji 及其合作者的研究文章(DOI: 10.1002/cctc.202400459)。
Front Cover: Synthesis-Structure-Catalysis Relations in CHA Zeolites Applied for Selective Catalytic Reduction of NOx with Ammonia (ChemCatChem 16/2024)
The Front Cover represents the three formation routes of zeolite from different starting materials. Zeolites are crucial industrial catalysts, whereas their crystallization mechanism is still unclear, limiting their rational functional design. Nao Tsunoji and co-workers present the synthesis–structure–catalysis relation of CHA zeolite to get fundamental knowledge for intentionally controlling the function of zeolites. Different starting materials provide three different formation pathways to form CHA zeolites with different properties in the presence of tetraethylammonium hydroxide as an inexpensive organic structure directing agent. The knowledge related to origin of the catalytic durability was obtained based on their structural character, crystallization mechanism, and exhaust gas purification ability. More information can be found in the Research Article by Nao Tsunoji and co-workers (DOI: 10.1002/cctc.202400459).
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.