Justina Anulytė, Vytautas Žičkus, Ernesta Bužavaitė-Vertelienė, Daniele Faccio, Zigmas Balevičius
{"title":"用于抑制光漂白的强耦合质子-激子极化子","authors":"Justina Anulytė, Vytautas Žičkus, Ernesta Bužavaitė-Vertelienė, Daniele Faccio, Zigmas Balevičius","doi":"10.1515/nanoph-2024-0259","DOIUrl":null,"url":null,"abstract":"Strong light–matter interactions have received a lot of attention, for example in the pursuit of plasmonic-excitonic structures as coherent light sources with low-power threshold. In this study, we investigate the influence of room temperature strong coupling between surface plasmon polaritons (SPP) and excitons on fluorescence lifetimes and photobleaching effects. Our plasmonic-photonic structure, comprising of thin silver (Ag) and gold (Au) layers with a Rhodamine 6G (R6G) dye layer, shows a clear shift in the plasmon resonance and R6G absorption lines with varying incident angles, indicative of strong coupling, with a measured Rabi splitting of approximately 90 meV. Fluorescence lifetime imaging microscopy (FLIM) was then employed to assess photobleaching, revealing a significant reduction in photobleaching effect for in strongly coupled plasmonic-excitonic structures compared to single Rhodamine R6G layers. Our findings indicate the pivotal role of strong light–matter interactions in reducing photobleaching effects and stabilizing fluorescence intensities, offering promising avenues for developing quantum multiparticle nanophotonic devices with enhanced stability and performance.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"11 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly coupled plasmon-exciton polaritons for photobleaching suppression\",\"authors\":\"Justina Anulytė, Vytautas Žičkus, Ernesta Bužavaitė-Vertelienė, Daniele Faccio, Zigmas Balevičius\",\"doi\":\"10.1515/nanoph-2024-0259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong light–matter interactions have received a lot of attention, for example in the pursuit of plasmonic-excitonic structures as coherent light sources with low-power threshold. In this study, we investigate the influence of room temperature strong coupling between surface plasmon polaritons (SPP) and excitons on fluorescence lifetimes and photobleaching effects. Our plasmonic-photonic structure, comprising of thin silver (Ag) and gold (Au) layers with a Rhodamine 6G (R6G) dye layer, shows a clear shift in the plasmon resonance and R6G absorption lines with varying incident angles, indicative of strong coupling, with a measured Rabi splitting of approximately 90 meV. Fluorescence lifetime imaging microscopy (FLIM) was then employed to assess photobleaching, revealing a significant reduction in photobleaching effect for in strongly coupled plasmonic-excitonic structures compared to single Rhodamine R6G layers. Our findings indicate the pivotal role of strong light–matter interactions in reducing photobleaching effects and stabilizing fluorescence intensities, offering promising avenues for developing quantum multiparticle nanophotonic devices with enhanced stability and performance.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0259\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0259","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strongly coupled plasmon-exciton polaritons for photobleaching suppression
Strong light–matter interactions have received a lot of attention, for example in the pursuit of plasmonic-excitonic structures as coherent light sources with low-power threshold. In this study, we investigate the influence of room temperature strong coupling between surface plasmon polaritons (SPP) and excitons on fluorescence lifetimes and photobleaching effects. Our plasmonic-photonic structure, comprising of thin silver (Ag) and gold (Au) layers with a Rhodamine 6G (R6G) dye layer, shows a clear shift in the plasmon resonance and R6G absorption lines with varying incident angles, indicative of strong coupling, with a measured Rabi splitting of approximately 90 meV. Fluorescence lifetime imaging microscopy (FLIM) was then employed to assess photobleaching, revealing a significant reduction in photobleaching effect for in strongly coupled plasmonic-excitonic structures compared to single Rhodamine R6G layers. Our findings indicate the pivotal role of strong light–matter interactions in reducing photobleaching effects and stabilizing fluorescence intensities, offering promising avenues for developing quantum multiparticle nanophotonic devices with enhanced stability and performance.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.